

woodardcurran.com
commitment & integrity drive results

Monthly Operating Report

January 2018

0217327.00 So. Sangamon February 20, 2018

SECTION PAGE NO. Executive Summary...... ES-1 SAFETY1-1 1.1 1.2 1.3 Safety Audit1-1 1.4 Miscellaneous Safety......1-1 2. COMPLIANCE, FLOWS AND LOADINGS2-2 2.1 2.2 2.3 Effluent Concentrations2-2 2.4 Lagoon Discharge Concentrations2-3 3.1 3.2 3.3 3.4 MAINTENANCE AND REPAIR.......4-4 4.1 Preventative and predictive maintenance......4-4 4.2 Corrective repairs4-4 PROJECT MANAGEMENT & SUPPORT......5-1 5. Staffing & Training5-1 5.1 5.2 Corporate Support5-1 5.3

Approved CIP Projects Current status.....6-1

Draft Capital Improvement Plan6-1

6.1 6.2

LIST OF TABLES

TABLE	PAGE NO.
Table 2.2 Influent Concentrations and Flow	2-2
Table 2.3 Finished Water Quality	2-2
Table 2.4 Weekly Grab Sample Analysis Results	2-3
Table 4.1 Budget Table	5-2

EXECUTIVE SUMMARY

Safety. Safety is the number one priority at Woodard and Curran. We continue to provide monthly training for operations staff at the plant, provide weekly safety updates and safety videos are assigned to all employees. The safety topic for this month was "Fire Extinguisher Safety". There were no lost time accidents in the month of January 2018. 100 percent of the items identified in the combined list of safety items have been completed.

Compliance. The finished water quality was within regulatory limits and all reporting and sampling requirements were met for the month. A copy of the Operations Report submitted to the Illinois Environmental Protection Agency is available at www.sswc.us.

During the month of January 2018, the plant pumped 38.635 million gallons from the well field and 30.56 million gallons of finished water. For the period of May 2017 through January 2018, the plant has pumped 4,821,997 more gallons of water then during the same period one year ago.

We have an exceedance on the Manganese for the daily limit for the month of January.

The SSWC plant has been placed on Critical Review status. Systems on Critical Review will be evaluated for sufficient capacity before issuance of water main extension permits.

Operations. There was 0 emergency call-outs for the month. There were 2 customer inquiries for the month.

- Well 1 pump and motor replacement and treatment of the well. As plant operational staff reported with the December 2017 Monthly Operating Report, Well #1 is out of service. Attachment B includes pictures of the old pump that illustrates the need for replacement as well as the quote for the replacement of the pump and motor as well as the cost for treating the well. The total estimated cost is \$31,021. There is a one-year warrant on both the pump and the motor. Would the commission like me to request Layne proceed with this work?
- **Greensand Filter and Pigging Stations Extensions.** The extension for the Greensand Filters and Pigging Stations is due to IEPA. Would you like plant operations staff to contact the Illinois Environmental Protection Agency and request another extension?

Maintenance and Repair. For the month of January 2018, there were 11 inspections, 3 preventative and 1 corrective maintenance activities completed.

Budget. Through January 26, 2018, we are \$22,617 under budget for the fiscal year.

Capital Planning. Woodard and Curran is working with Meco Engineering to update and prioritize the Capital Improvement Plan. The CIP is a planning document that includes all projects anticipated to exceed \$5,000 in cost over the next five years. The CIP is an ongoing process and will be refined from time to time as projects are completed and new issues are identified.

1. SAFETY

1.1 SAFETY TRAINING

Woodard and Curran continues to provide safety training for personnel at the plant. This is accomplished by requiring daily safety meetings, weekly safety updates are available to the plant, and safety videos are assigned to all employees and are required to be completed. The January 2018 safety training topic was "Cold Stress".

1.2 LOST TIME ACCIDENTS

There were 0 lost time accidents in the month of January 2018.

1.3 SAFETY AUDIT

Since Woodard and Curran assumed operational responsibility for the SSWC plant, two safety audits have been completed. The first audit was conducted in May 2015 and identified 89 items needing to be addressed. Approximately 86 percent of those items identified had been addressed when a second audit occurred in November 2016.

The finding for these two audits were combined to produce a list of 40 items needing to be addressed. As of November 30, 2017, 100 percent of the items have been addressed.

1.4 MISCELLANEOUS SAFETY

There were no Miscellaneous Safety items for the month.

2. COMPLIANCE, FLOWS AND LOADINGS

2.1 COMPLIANCE

The finished water quality was within regulatory limits and all reporting and sampling requirements were met for December. A copy of the Operations Report to the Illinois Environmental Protection Agency (IEPA) is available on the SSWC website.

2.2 INFLUENT FLOWS AND LOADINGS

The total gallons pumped from the well field was 38.635 MG. The influent parameters were all within the normal range.

The influent flow and loadings are summarized below in Table 2.2

		Tab	le 2.2 Infl	uent Conce	entrations a	and Flow		
	рН	Temp	Iron	Manganese	Fluoride	Hardness	Alkalinity	Well Flow Gals (k)
Max.	7.62	14.2	1.46	0.223	-	376	296	1.631
Min.	6.90	12.6	0.53	0.196	-	340	280	0.988
Avg.	7.35	13.4	0.85	0.210	-	359	287	1.246
Total	-	-	-	-	-	-	-	38.635

2.3 EFFLUENT CONCENTRATIONS

The facility filtered 35.368 MG during the month with a daily average of 1.141 MG and a min/max of 1.502/0.897 MG.

				Table	2.3 Fir	nished Wat	er Qualit	у		
	Free CL2	Total CL2	рН	Temp	Iron	Manganese	Fluoride	Hardness	Alkalinity	Phosphate
Max.	1.5	1.7	7.92	14.6	0.02	0.051	1.06	132	290	1.58
Min.	1.3	1.3	7.44	12.6	0.00	0.007	0.72	104	258	1.05
Avg.	1.3	1.5	7.77	13.4	0.01	0.015	0.88	115	273	1.24
MCL	-	-	-	-	1.00	-	4.00	-	-	-
SMCL	-	-	-	-	0.30	0.050	2.00	-	-	-

Finished Water Flow Comparison for FY 2018

Time Period	2017-2018	2016-2017	2015-2016
May – January	314,544,420	309,722,423	290,046,675
Increase for the same po	eriod last year	4,821,997	

		FINISHED V	WATER PUMPI	NG HISTORY		
	2017-2018	2016-2017	2015-2016	2014-2015	2013-2014	2012-2013
May	32,301,672	33,248,127	33,376,051	37,669,726	31,157,411	29,592,356
June	39,931,402	41,541,321	31,092,539	38,462,951	36,530,691	47,120,577
July	42,164,927	35,378,396	33,123,375	38,674,894	40,908,704	57,780,876
August	38,760,634	35,401,490	38,109,033	33,748,543	42,999,243	42,398,528
September	39,896,986	36,325,215	36,546,171	29,763,075	37,597,085	32,510,603
October	33,506,605	34,374,820	34,783,455	28,803,052	33,916,594	30,278,765
November	28,617,333	30,478,309	27,217,293	28,426,579	31,615,459	27,114,479
December	28,808,037	32,525,530	27,788,637	28,656,869	32,697,551	29,014,035
January	30,556,824	30,449,215	28,510,121	30,346,721	32,499,427	28,007,432
February		27,373,232	26,095,228	26,336,077	28,745,378	25,763,807
March		30,068,363	27,851,811	28,729,919	31,217,486	28,130,190
April		29,625,797	29,292,618	29,270,184	31,690,073	27,991,597
Totals	314,544,420	396,789,815	373,786,332	378,888,590	411,575,102	405,703,245
Average		1,087,095	1,022,702	1,038,051	1,127,603	1,111,516
Maximum		2,061,098	2,177,926	1,837,344	2,010,587	2,546,901
Minimum		275,315	_	349,690	363,767	142,411

2.4 LAGOON DISCHARGE CONCENTRATIONS

The results for the NPDES lagoon discharge permit are summarized below.

Table 2.4 Weekly Grab Sample Analysis Results

	ı	_agoon Eff	luent Results	;		
Date	Fe (mg/l)	Mn (mg/l)	Chloride (mg/l)	CI ² (mg/l)	pH (S.U.)	TSS (mg/l)
01/24/2018	0.900	1.100	280	0.03	7.84	0
Minimum						
Maximum						
Average						
Monthly Avg Limit	2.000	1.000				15
Daily Limit	4.000	2.000	500	0.05	6.0-9.0	30

The Chloride sample for the month of January 2018, performed by the Springfield Metropolitan Sanitary District, was 16,000 mg/L. The limit for chloride discharge to the sanitary district is 30,000 mg/L.

We have an exceedance on the Manganese for the daily limit for the month of January.

3. OPERATIONS

3.1 EVENTS IMPACTING OPERATIONS

Overflow of the Chatham Tower. On January 2, 2018 at approximately 7:00 am, Plant Operations staff received a call from KAT Trucking. The Water Tower in Chatham overflowed making it impossible unload Chloride waste at the Sangamon County Water Reclamation District permitted location. Currently, SSWC unloads the Chloride waste at the base of the water tower. A call was placed to the Sangamon County Water Reclamation District and they requested the Chloride waste be taken directly the treatment plant on 8th Street.

Pictured below is fenced in area at the base of the tower and the parking lot which was inaccessible for disposal of the Chloride Waste.

Change in Chlorine Feed Rate. On January 3, 2018, Mr. Patrick McCarthy called plant operations staff and requested the Chlorine level be lowered in the water since we are not currently pumping to New Berlin. A few people have indicated the water has a Chlorine smell to it in Chatham. The village of Chatham made a similar request on January 17, 2018 and the Chlorine rate was lowered again.

Broken Water Line on Brine Tank #2. On January 2, 2018, the water line on Brine Tank #2 broke. We are not sure whether the line broke due to temperature or stress on the elbow. Repairs were made on January 3, 2018 by Henson Robinson. This tank was off line at the time of the break and it took place during business hours so there was no disruption in service and only a minor amount of water was lost from the tank.

Sodium Permanganate Line Freeze. On January 2, 2018, the Sodium Permanganate line started to freeze from the extremely cold temperatures on January 1, 2018. Pictured below is a small cover constructed by Plant Operations staff. The line was thawed using a heat gun. We then insulated the conduit and the outside of the box to help protect the line.

3.2 EMERGENCY & SERVICE CALLS

Service Calls:

• On January 12, 2018, we received a warning alarm for the fuel temperature sensor on the plant generator. Cummins Crosspoint was on-site January 16, 2018 to install and new fuel temperature sensor.

3.3 EMERGENCY CALL-OUTS

There was 0 emergency call-out for the month requiring operational personnel at the plant after normal business hours.

3.4 CUSTOMER INQUIRIES

There were 2 customer inquiries for the month of January:

- Stephen Nightingale called regarding Chloride waste hauling practices.
- Mr. Matt Mau called regarding Chlorine levels in the water.

4. MAINTENANCE AND REPAIR

4.1 PREVENTATIVE AND PREDICTIVE MAINTENANCE

For the month of January 2018, there were 11 inspections, 3 preventative and 1 corrective maintenance activity completed.

4.2 CORRECTIVE REPAIRS

• Rotometer Replacement. The rotometer on Bank #3, which indicates to plant operations staff the pressure on the membranes, was bent and required replacement. The rotometer was replaced on January 10, 2018 and there was no interruption in service.

OTHER WORK PERFORMED

Damaged Hydrant Repaired. Hydrant #2004 located approximately 0.5 miles east of Lead Line Road was damaged sometime prior to December 9, 2017. Henson Robinson made repairs on January 24, 2018. Pictured below is the hydrant prior to repair.

Illinois State Water Survey. Plant operations staff forwarded information to the Illinois State Water Survey on water pumped from the wells for 2015, 2016 and 2017 as required by law.

Cleaning of Brine Tank #2. On January 10, 2018, Bodine Services was on-site to clean brine tank #2. Below is a picture of the brine tank prior to cleaning.

Below is a picture of the tank once it's been cleaned.

5. PROJECT MANAGEMENT & SUPPORT

5.1 STAFFING & TRAINING

- Woodard and Curran continues to train and provide staffing to the plant as needed.
- Woodard and Curran IT staff are working with plant personnel on Hach Wims. Hach Wims is the computer program utilized by Woodard and Curran for developing IEPA Monthly Operating Reports and storage of test data. We are working through the issues discovered with the reporting last year as time allows.

5.2 CORPORATE SUPPORT

The following individuals, either on-site or remotely, provided assistance in operation and/or maintenance of the plant during the month.

- Marc Thomas
- Bobby Nichols
- Ray Giguere
- Shannon Eyler
- Alan Fabiano
- Cara Hanson

- Jackie Smith
- Greg Freiden
- Stephanie Crowell
- Wendy Foreman
- Mike Cherniak

5.3 BUDGET

Table 5.3 below is a breakdown of the current budget as of January 26, 2018.

Table 5.3 Budget Table

Budget Category	Month Budget	Month Actual	YTD Budget	YTD Actual	Annual Budget	Over (under)	% of budget
Labor (D.L. + OH)	\$24,213	\$21,337	\$217,913	\$191,936	\$290,551	(\$25,977)	66%
Utilities	\$8,150	\$3,279	\$73,350	\$70,720	\$97,800	(\$2,630)	72%
Chemicals	\$14,583	\$5,086	\$131,250	\$138,773	\$175,000	\$7,523	79%
Maintenance & Repair	\$9,102	\$17,301	\$81,919	\$99,023	\$109,225	\$17,104	91%
Chloride	\$13,522	\$10,234	\$121,695	\$105,444	\$162,260	(\$16,251)	65%
Lab Supplies and Equipment	\$1,882	\$0	\$16,938	\$14,183	\$22,584	(\$2,755)	63%
Office Supplies	\$216	\$87	\$1,940	\$3,394	\$2,586	\$1,455	131%
Miscellaneous Expenses	\$1,141	\$895	\$10,271	\$10,384	\$13,695	\$113	76%
Other Operating Costs	\$1,398	\$1,304	\$12,582	\$13,440	\$16,776	\$858	80%
Subtotal of Costs for Contract Year 3	\$74,206	\$59,523	\$667,858	\$647,297	\$890,477	(\$20,561)	73%
Fixed Fee for Contract Year 3	\$7,421	\$5,952	\$66,786	\$64,730	\$89,048	(\$2,056)	73%
Year One Transition	\$1,366	\$1,366	\$12,292	\$12,292	\$16,389	\$0	75%
Total	\$82,993	\$66,841	\$746,936	\$724,318	\$995,914	(\$22,617)	73%

6. CAPITAL PLANNING

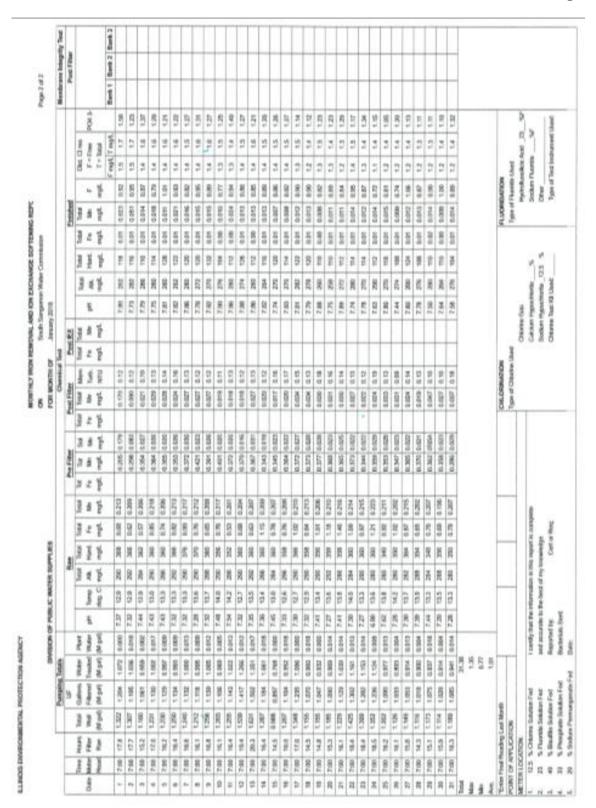
6.1 APPROVED CIP PROJECTS CURRENT STATUS

No new information is available.

6.2 DRAFT CAPITAL IMPROVEMENT PLAN

The CIP is a planning document that includes all projects anticipated to exceed \$5,000 in cost over the next five years. The CIP is an ongoing process and will be refined from time to time as projects are completed and new issues are identified.

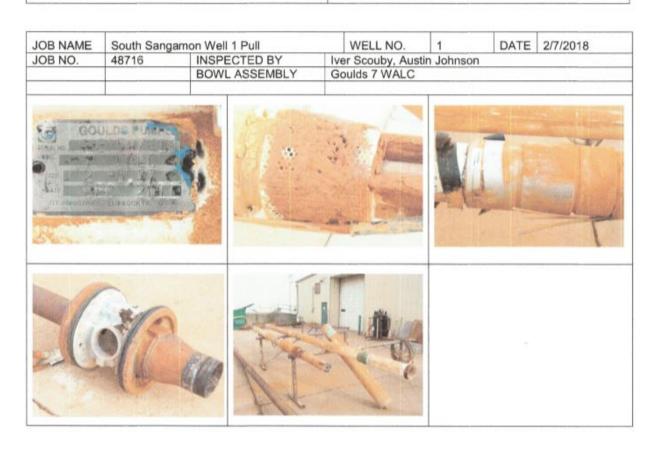
The most recent Capital List was included in the Year 2 Annual Report.



Attachment A Page 1 of 2

CONTRICTOR PUBLIC WATER SUPPLIES Pumping Totals Chlorine Fig.	2 4	Z	JC WATER S	SR SUPP	Fluoride	100	Chemicals Applied Photobale		NaMirOs	NOR N	FOR MONTH OF	WITH OIL Jonesey 2018 UP Filters Up Filters	Jones .	Johnson 2018 UF Filters on second our same or not red Wash	be see		Waser	100	1	Selbenon	68	1	Suff. Renes		0	Obloride	
< 3	Plant A	< 2	e 2	- 4		4	-	< 3	linear space	- 3	-	-	11	no hadman. Thaimmaking a resid influde Yours propined: "Yours	11		Softwed Bypanood Gal. Gal	Bypanso	-			111		7 1	-	h mgt.	
ON DIEG ON DIEG ON DIEG. ED	-	-	ź	Š	s s	ž	5	ž S	5	ź	ž	-	N	1 7	+	S.	E S	N 00	1 -	N	-	1 -	3	, Ext	1 EX2	633	EX4
1,204 1,072 0,000 19	900'8		190.0	2.28	970 0	0.35 36.0	0 1.25	1.00	0.10			0.75	0.75	0.75	0.75	0.144	0.795	0.403	÷	7	45	9	8,124 41,400		-	-	-
1.195 1.036 0.018 1	9.018		164.0	907	12.D @	0.46 17.0	0 0.65	-				0.75	5.0	0.73	0.73	0,145	0.700	0.435					0				Ц
9.000	9,000		143.0	2002	-		-	_				0.75	\neg	\rightarrow	\rightarrow	0.100	0.700	0.361	华	2	41	-	\rightarrow	901	-		Ц
1,130 1,002 0,017	9,017		170.0	237	-+		+				4	0.75	0.75	-	\rightarrow	0.117	0.746	0.354				R	2,381 16,350	020	-	_	
0.000 0.000	9000		162.0	2.16	+	0.00	-	22.00	0 238		1	0 0	_			-	0.745	0.394	¥	4 :	2 :	-	-	9 5	+	1	
2000 3000	9,000	-	0.80	21.72	+	+	-	-			1	0.03	-	-		-	0.740	0.386	1	‡	ŧ	+	+	90	+	-	1
1134 8.866 0.003	0.000		160.0	2.18	7.0 0	428 314	0 1.23				1	0 8 0	0 0	0.70	0.00	0.130	174	0.000	\$ 5	1	5	e e	4,562 20,700 4,543 34,790	8 8	+	1	1
1,005 0,012	0.012			10.5	+	+-	+	-	_		L	0.76	_	-	-	+-	9.752	0.387	1	-		40	+	980	+	ļ	L
0.005	0.005			t-i-	-	-	+-	24.00	0 250			0.76	_	-	-	-	9.736	93376	8	¥	43	-	+	98	ŀ	L	L
1,143 1,002 0,013	0.013		127.0	1.67	98.0	0.38 52.0	0 2.85	5 31.00	3.10			0.75	$\overline{}$	0.76		direct	0.754	0.360		-	Г	98	+	98	H	L	L
1.417 1.288 0.012			220.0	330	27.0 0.75	0.84 50.0	0 1.50	20 31.00	0 254			0.75	0,75	0.70	0.75	0.150	\$69.0	9,482	8	37	-	8	9,124 41,400	901	-		L
1502 1351 0.017	0.017		0.96	95'0	21.0 0.	0.62 23.0	1910 07	15.00	1.15			0.75	0.75	0.75	0.75	0.170	1981	0.811	8	æ	-	-	8,124 41,400	901	H		L
1.164 1.061 0.013	0.018		136.0 1,72	1,72	9.0	0.34 27.0	101 0	_				0.75	0.75	0.75	0.75	0.141	0.784	0.403					0 8				
8.807 8.388 0.800 172.0 2.87	0.000		172.0	-	21.0 1.	1.04 37.0	1.91	$\overline{}$				0.73	0.75	0.75	0.75 0,100	in in	0.540	0.305	8	Ġ.	25	8	8,124 41,456	8			
1.154 0.952 0.018			0.015 161.0 2.19	-	33.0	1.37 10.0	0 0.42	-	_			0.75	0.73	0.75	0.75 0.127	-	0.729	0.375					0 0	2			
1.098		-1	125.0	-+	-	-		_	_			0.75	\neg	0.75	6.53	-	0.015	0.420	10	R	2	7	*	8	-		Ц
1,070 0,960 0,67		m e	0.638 142.0	8 5	900	037 000	0.00	28(0)	0 0 0		1	6.0	6.3	6.5	2 5	0.124	0.736	0.304	1	1	1		0 0		+	1	1
0.868		9	138.0	+	-	+	+				1	0 0	-	i i		+	0.700	0.874	1	i	+-	+-	+	2 5	+	1	1
1.039	0.05	- 10	158.0	+	-	+	+	eğinin			L	828	-	475		-	0.745	0.384	4	2	Q	+	+	1 25	+	L	L
1,382 1,181 0,010		-	0.013 158.0	1.82	35.0	1.19 45.0	147	35.00	0.230			9.75	0.75	97.9	0.75	-	0.859	0.443		8	18	33 6.	6,843 31,050	150	H	L	
1,282 1,153 0,03		9	0.034 156.0	1.82	2.0 0.	0.07 38.0	0 130		_			97.6	$\overline{}$	0.75 0.75	0.75	0.128	0.846	0.436	2			35.	4,562 20,700	00			
1,236 1,124 0,008 131.0	0.00	400	131.0	-	\rightarrow	-	979	_	-		Ц	9.75			97.0	-	0.619	0.428	4	÷	R	-	$\overline{}$	001			
1.090 0.977 0.013 136.0	0.013	-1	136.0	+	-	+		9 27.00	2.00			6 3		-		-	0.719	0.371	4	-	-	7	\rightarrow	90	+	4	1
1.623 Q.853 Q.00	0 0	0 0	0.040 101.0	g z	0 0	0.00 53.0	1,466				1	6 1		478 478	0.75 0.129	+	0.682	0.391	1	ō	Q	-	4,962 20,700	8 3	+	1	
	0.0	1 3	127.0	+	+	+						87.6	a.75	0.75	0.75 0.082	+-	0.672	0.346	9	5	ı	4 4	0.134 41.400	00	ŀ	ļ	L
1.675 0.937 0.0	00	9	0.010 132.0	1	-	-	100		20.00 2:14			878	0.75	87.8	9.75 0.134	-	0.750	0.366	L		+	-	-		ļ	L	L
1.628 0.914 0.00		1	0.004 145.0	2.11	20.0	121 310	77 0	M 22.00	2.47		*	0.75	6.73	0.75	0.75 0.134	-	0.878	935.0	89	8	10	42	9,124 41,430	000	ŀ	L	L
1.585 0.941 0.035	0.0	4	0.014 129.0	173	13.0	0.55 4/0	0.17	7 2.00	0.21			0.75	87.0	873	92.0	0.119	0.7%	0.368			ē	el	2,281 10,350	080			Ш
85.5 1.38 1.38	2000		RTW Sample	agen	TOS 420.0 Pro	26 C	8	Cabden	Alkalendy 300.0 mgl. Calden Hardness 96.3 mgl.	300.0	2 2			Suffish	Sulfishe 618 mgl.	8								-			
101					pH T	pH 7.53 Su			Chicante	36.3	101																
'Enter Final Reading Last Morth POINT OF APPLICATION	_										Type o	CHLORIMATION Type of Chlorine Used	a Upset					FLUCREMINON Type of Flumide Used	MITCH	Glass				_			
												Chlorine Gas	M Gas						ř	Hydroflaosticz Acid	Se.	12.0	476	_			
% Charter Solution Feed	ъ.		Correlly.	Corelly that the in-	formation in this separat is complete.	er this sup	ort in oor	apports				Calca	Calcium Hypochibelle	Spile					8	Sodan Puorde	ş	*		_			
% Bayelle Soldon Fed			Reported by:	d by:	Reported by: Certion III	Cont	Certor Req					Chlorin	Chlorine Test 10 Used:	Chlorine Theritite Used:	0				Type I	14	1 indh	Type of Test Instrument Used	18				
% Phesologic Schillor Fed	4																										

Attachment A Page 2 of 2



Attachment B Page 1 of 3

South Sangamon Water Commission WELL NO. 1 PUMP INSPECTION REPORT

As you know we've pulled the Well 1 Pump assembly and brought it to our shop for inspection. We've determined the piping is reusable, however the pump, motor and cable need replaced. We would also recommend chemical rehabilitation of well given the iron build-up.

The following estimate includes:

- Loading and mobilizing pump service rig to and from the site
- Installing new submersible pump assembly
- · Running a brief pump testing of the well

The above Scope of Work would be performed on a time and material basis in accordance with the rates, terms, and conditions as outlined on our attached Work Order Form. Given the pump is in a 15' tower, will utilize a 3-man crew for setting the new pump assembly.

Attachment B Page 2 of 3

South Sangamon Water Commission WELL NO. 1 PUMP INSPECTION REPORT

Item	Description	Unit	Est. Qnt'y	Unit Price	Total Estimate
1	Labor: 3-man crew to install new pump assembly (2, 10 hour days)	HR	20	\$428.00	\$8,560.00
2	Materials: 100' of AWG #6 CABLE GRUNDFOS 300S150-4 Submersible Pump Setting Materials 15 HP 460 V MOTOR 4" X 6" ADAPTER 4" X 12" SST NIPPLE	LS	1	\$5,896.00	\$5,896.00
3	Shop Time: Machinist & Equipment	HR	10	\$156.00	\$1,560.00
4	Load, Mobilize, Demobilize from site	LS	1	\$1,500.00	\$1,500.00
	Per Diem: 1 night	LS	3	\$110.00	\$330.00
тота	L				\$17,816.00

In regards to chemical rehabilitation of the well, the following schedule represents the proposed treatment scenario:

- 1. Run initial specific capacity test
- Introduce first treatment consisting of 6 drums of muriatic acid mixed with 1000 gallons of water.
 Refill tank and display with an additional 2000 gallons of water. Surge a minimum of 4 hours keeping PH at 2 by adding more muriatic acid if necessary. Let sit overnight.
- Next day surge two hours maintaining the PH at 2. Pump to waste while neutralizing with caustic soda.
- Introduce 15 gallons of sodium hypochlorite mixed with a gallon of Layne Oximate and 1400 gallons of water. Displace with 1000 gallons of water, surge two hours and let sit overnight.
- 5. Next day surge an additional two hours and then pump to waste neutralizing with sodium bisulfite.
- Run specific capacity test.

NOTE: South Sangamon would be responsible for running the bacteria tests after the treatment.

Attachment B Page 3 of 3

South Sangamon Water Commission WELL NO. 1 PUMP INSPECTION REPORT

Item	Description	Unit	Est. Qnt'y	Unit Price	Total Estimate
1	Labor: 3-man crew to chemically rehab well (3, 8 hour days)	HR	24	\$428.00	\$10,272.00
2	Materials: MURIATIC ACID CAUSTIC SODA CHLORINE SODIUM BISULFITE LAYNE OXIMATE	LS	1	\$2,273.00	\$2,273.00
	Per Diem: 2 nights for 3-man crew	LS	6	\$110.00	\$660.00
TOTA	L				\$13,205.00

Layne Christensen Company appreciates the opportunity to submit the above proposal. Please let me know if you have any further comments or questions at 314-502-7540.

Sincerely,

Austin Johnson

Austin Johnson Account Manager