

WOODARDCUITAN.COM COMMITMENT & INTEGRITY DRIVE RESULTS

Monthly Operating Report

April 2018

0217327.00 So. Sangamon May 15, 2018

TABLE OF CONTENTS

SECTION

Exe	cutive Sum	imary	ES-1
1.	SAFETY		1-1
	1.1 1.2 1.3 1.4	Safety Training Lost time Accidents Safety Audit Miscellaneous Safety	1-1 1-1
2.	COMPLIA	NCE, FLOWS AND LOADINGS	2-2
	2.1 2.2 2.3 2.4	Compliance Influent flows and loadings Effluent Concentrations Lagoon Discharge Concentrations	2-2 2-2
3.	OPERATI	ONS	3-1
	3.1 3.2 3.3 3.4	Events impacting operations Emergency & Service calls Emergency Call-outs Customer Inquiries	3-1 3-2
4.	MAINTEN	ANCE AND REPAIR	4-3
	4.1 4.2	Preventative and predictive maintenance Corrective repairs	
5.	PROJECT	MANAGEMENT & SUPPORT	5-1
	5.1 5.2 5.3	Staffing & Training Corporate Support Budget	5-1
6.	CAPITAL	PLANNING	6-1
	6.1 6.2	Approved CIP Projects Current status Draft Capital Improvement Plan	

LIST OF TABLES

TABLE	PAGE NO.
Table 2.2 Influent Concentrations and Flow	
Table 2.3 Finished Water Quality	
Table 2.4 Weekly Grab Sample Analysis Results	
Table 4.1 Budget Table	

EXECUTIVE SUMMARY

Safety. Safety is the number one priority at Woodard and Curran. We continue to provide monthly training for operations staff at the plant, provide weekly safety updates and safety videos are assigned to all employees. The safety topic for this month was "Incident Reporting and Evaluation". There were no lost time accidents in the month of April 2018. 100 percent of the items identified in the combined list of safety items have been completed.

Compliance. The finished water quality was within regulatory limits and all reporting and sampling requirements were met for the month. A copy of the Operations Report submitted to the Illinois Environmental Protection Agency is available at www.sswc.us.

During the month of April 2018, the plant pumped 34.149 million gallons from the well field and 27.110 million gallons of finished water. For the period of May 2017 through April 2018, the plant has pumped 1,299,204 less gallons of water then during the same period one year ago.

The SSWC plant has been placed on Critical Review status. Systems on Critical Review will be evaluated for sufficient capacity before issuance of water main extension permits.

Operations. There was 0 emergency call-outs for the month. There were 2 customer inquiries for the month.

Maintenance and Repair. For the month of April 2018, there were 10 inspections, 5 preventative and 0 corrective maintenance activities completed.

Budget. Through the end of the third year, we are \$8,746 under budget for the fiscal year. <u>Please note that</u> not all expenses for the 2017-2018 timeframe have been added to this summary.

Capital Planning. Woodard and Curran is working with Meco Engineering to update and prioritize the Capital Improvement Plan. The CIP is a planning document that includes all projects anticipated to exceed \$5,000 in cost over the next five years. The CIP is an ongoing process and will be refined from time to time as projects are completed and new issues are identified.

1. SAFETY

1.1 SAFETY TRAINING

Woodard and Curran continues to provide safety training for personnel at the plant. This is accomplished by requiring daily safety meetings, weekly safety updates are available to the plant, and safety videos are assigned to all employees and are required to be completed. The April 2018 safety training topic was "Incident Reporting and Evaluation".

1.2 LOST TIME ACCIDENTS

There were 0 lost time accidents in the month of April 2018.

1.3 SAFETY AUDIT

Since Woodard and Curran assumed operational responsibility for the SSWC plant, two safety audits have been completed. The first audit was conducted in May 2015 and identified 89 items needing to be addressed. Approximately 86 percent of those items identified had been addressed when a second audit occurred in November 2016.

The finding for these two audits were combined to produce a list of 40 items needing to be addressed. As of November 30, 2017, 100 percent of the items have been addressed.

1.4 MISCELLANEOUS SAFETY

There were no Miscellaneous Safety items for the month.

2. COMPLIANCE, FLOWS AND LOADINGS

2.1 COMPLIANCE

The finished water quality was within regulatory limits and all reporting and sampling requirements were met for April. A copy of the Operations Report to the Illinois Environmental Protection Agency (IEPA) is available on the SSWC website.

2.2 INFLUENT FLOWS AND LOADINGS

The total gallons pumped from the well field was 34.149 MG. The influent parameters were all within the normal range.

		Tab	le 2.2 Infl	uent Conce	entrations a	and Flow		
	рН	Temp	Iron	Manganese	Fluoride	Hardness	Alkalinity	Well Flow Gals (k)
Max.	7.58	15.0	1.17	0.240	-	380	290	1.434
Min.	7.01	12.8	0.05	0.186	-	300	260	0.858
Avg.	7.29	13.7	0.61	0.203	-	352	277	1.138
Total	-	-	-	-	-	-	-	34.149

The influent flow and loadings are summarized below in Table 2.2

2.3 EFFLUENT CONCENTRATIONS

The facility filtered 30.832 MG during the month with a daily average of 1.028 MG and a min/max of 0.718/1.333 MG.

				Table	2.3 Fir	nished Wat	er Qualit	у		
	Free CL2	Total CL2	рН	Temp	Iron	Manganese	Fluoride	Hardness	Alkalinity	Phosphate
Max.	1.4	1.6	7.95	14.6	0.02	0.039	1.26	140	286	1.41
Min.	0.6	0.8	7.04	12.5	0.00	0.005	0.20	100	200	1.01
Avg.	1.0	1.2	7.59	13.6	0.01	0.012	0.86	116	271	1.19
MCL	-	-	-	-	1.00	-	4.00	-	-	-
SMCL	-	-	-	-	0.30	0.050	2.00	-	-	-

Finished	Water	Flow	Comparison	for	FY	2018
----------	-------	------	------------	-----	----	------

Time Period	2017-2018	2016-2017	2015-2016
May – April	395,490,611	396,789,815	373,786,332
Increase for the same pe	eriod last year	-1,299,204	

		FINISHED V	VATER PUMPI	NG HISTORY		
	2017-2018	2016-2017	2015-2016	2014-2015	2013-2014	2012-2013
May	32,301,672	33,248,127	33,376,051	37,669,726	31,157,411	29,592,356
June	39,931,402	41,541,321	31,092,539	38,462,951	36,530,691	47,120,577
July	42,164,927	35,378,396	33,123,375	38,674,894	40,908,704	57,780,876
August	38,760,634	35,401,490	38,109,033	33,748,543	42,999,243	42,398,528
September	39,896,986	36,325,215	36,546,171	29,763,075	37,597,085	32,510,603
October	33,506,605	34,374,820	34,783,455	28,803,052	33,916,594	30,278,765
November	28,617,333	30,478,309	27,217,293	28,426,579	31,615,459	27,114,479
December	28,808,037	32,525,530	27,788,637	28,656,869	32,697,551	29,014,035
January	30,556,824	30,449,215	28,510,121	30,346,721	32,499,427	28,007,432
February	25,617,914	27,373,232	26,095,228	26,336,077	28,745,378	25,763,807
March	28,217,699	30,068,363	27,851,811	28,729,919	31,217,486	28,130,190
April	27,110,578	29,625,797	29,292,618	29,270,184	31,690,073	27,991,597
Totals	395,490,611	396,789,815	373,786,332	378,888,590	411,575,102	405,703,245
Average	1,083,536	1,087,095	1,022,702	1,038,051	1,127,603	1,111,516
Maximum	2,220,362	2,061,098	2,177,926	1,837,344	2,010,587	2,546,901
Minimum	423,165	275,315	-	349,690	363,767	142,411

2.4 LAGOON DISCHARGE CONCENTRATIONS

The results for the NPDES lagoon discharge permit are summarized below.

	l	_agoon Eff	luent Results	;		
Date	Fe (mg/l)	Mn (mg/l)	Chloride (mg/l)	Cl² (mg/l)	рН (S.U.)	TSS (mg/l)
04/19/2018	0.330	0.299	220	0.04	7.89	0
Minimum						
Maximum						
Average						
Monthly Avg Limit	2.000	1.000				15
Daily Limit	4.000	2.000	500	0.05	6.0-9.0	30

Table 2.4 Weekly Grab Sample Analysis Results

The Chloride sample for the month of April 2018, performed by the Springfield Metropolitan Sanitary District, was unknown as of May 15, 2018. The limit for chloride discharge to the sanitary district is 30,000 mg/L.

3. OPERATIONS

3.1 EVENTS IMPACTING OPERATIONS

Rehabilitation of Well 2. On April 9, 2018, Layne was on-site to begin rehabilitation of Well 2. Rehabilitation was completed on April 11, 2018. Well 2 will now pump 163 gpm with a drawdown of six-foot. Pictured below are Layne's trucks and equipment needed to rehabilitate Well 2.

3.2 EMERGENCY & SERVICE CALLS

Service Calls:

• There were no emergency call outs for the month.

3.3 EMERGENCY CALL-OUTS

There was 1 emergency call-out for the month requiring operational personnel at the plant after normal business hours.

3.4 CUSTOMER INQUIRIES

There were two customer inquiries for the month of April:

- 1. On the evening of April 16, 2018, plant operations staff received a call from an SSWC customer who broke the water line coming into their home and needed the water shut off immediately.
- 2. Plant operations staff received call from an SSWC customer on the west side of Chatham who had no water pressure.

OTHER WORK PERFORMED

Pinning of the Membrane Modules. Plant Operations staff pinned membranes on April 11, 2018. Pictured below are Stephen Bivin (left) and Kevin Canham (right) working on modules from Bank #1.

4. MAINTENANCE AND REPAIR

4.1 PREVENTATIVE AND PREDICTIVE MAINTENANCE

For the month of April 2018, there were 10 inspections, 5 preventative and 0 corrective maintenance activity completed.

4.2 CORRECTIVE REPAIRS

Plant Effluent Air Release. On Thursday, April 5, 2018, the air release on the Plant Effluent line (circled in red in the picture below) was leaking water on the floor.

The valve was disassembled, cleaned and reassembled and placed back in service. There was no disruption in service.

Chlorine Line Cleaning. On Wednesday, April 4, 2018, the plant was taken off-line to test high service pump programming. While off line, the Chlorine line was cleaned as a routine activity. The pictures below show the debris that was in the screen in the room where the pump is located. The debris was removed, everything was reassembled and put back in service when the plant was placed back on line.

5. PROJECT MANAGEMENT & SUPPORT

5.1 STAFFING & TRAINING

• Woodard and Curran continues to train and provide staffing to the plant as needed. With the resignation of Mr. Keith Sommers, Mr. Stephen Bivin is filling in on a temporary basis.

5.2 CORPORATE SUPPORT

The following individuals, either on-site or remotely, provided assistance in operation and/or maintenance of the plant during the month.

- Marc Thomas
- Jackie Smith
- Ray Giguere
- Stephen Bivin

- Greg Frieden
- Stephanie Crowell
- Shannon Eyler
- Wendy Foreman

5.3 BUDGET

Table 5.3 below is a breakdown of the current budget as of April 27, 2018. <u>Please note that not all expenses</u> for the 2017-2018 timeframe have been added to this summary.

Budget Category	Month Budget	Month Actual	YTD Budget	YTD Actual	Annual Budget	Over (under)	% of budget
Labor (D.L. + OH)	\$24,213	\$22,231	\$290,551	\$261,491	\$290,551	(\$29,060)	90%
Utilities	\$8,150	\$7,478	\$97,800	\$97,416	\$97,800	(\$384)	100%
Chemicals	\$14,583	\$5,403	\$175,000	\$188,541	\$175,000	\$13,541	108%
Maintenance & Repair	\$9,102	\$16,647	\$109,225	\$139,004	\$109,225	\$29,779	127%
Chloride	\$13,522	\$11,711	\$162,260	\$142,225	\$162,260	(\$20,035)	88%
Lab Supplies and Equipment	\$1,882	\$180	\$22,584	\$17,061	\$22,584	(\$5,523)	76%
Office Supplies	\$216	\$130	\$2,586	\$3,970	\$2,586	\$1,384	154%
Miscellaneous Expenses	\$1,141	\$2,044	\$13,695	\$14,632	\$13,695	\$937	107%
Other Operating Costs	\$1,398	\$2,004	\$16,776	\$18,186	\$16,776	\$1,410	108%
Subtotal of Costs for Contract Year 3	\$74,206	\$67,828	\$890,477	\$882,526	\$890,477	(\$7,951)	99%
Fixed Fee for Contract Year 3	\$7,421	\$6,783	\$89,048	\$88,253	\$89,048	(\$795)	99%
Year One Transition	\$1,366	\$1,366	\$16,389	\$16,389	\$16,389	\$0	100%
Total	\$82,993	\$75,977	\$995,914	\$987,168	\$995,914	(\$8,746)	99%

Table 5.3 Budget Table

6. CAPITAL PLANNING

6.1 APPROVED CIP PROJECTS CURRENT STATUS

No new information is available.

6.2 DRAFT CAPITAL IMPROVEMENT PLAN

The CIP is a planning document that includes all projects anticipated to exceed \$5,000 in cost over the next five years. The CIP is an ongoing process and will be refined from time to time as projects are completed and new issues are identified.

The most recent Capital List was included in the Year 2 Annual Report.

Children our c	Childene our cut	Childene our cut	Chlothe Fluorid	Childrense Fluorid	Phone Phone	- PLO		Chomica Phose	Chemicals Applied Phosphate	Nation		Bi-Suffite	14	UF Filture act top references to the end of second partners of the end of	UF Filters	dinary viscos			Water		Softeners In vice test	Softenera Lines vices int renor d		Soft. Regen	- 3		Chloride	
Post Ant Ant Ant Ant Ant Ant Ant Ant Ant An	Post Ant Ant Ant Ant Ant Ant Ant Ant Ant An	Amit Amit Amit Amit Amit Amit Amit Amit	Antt Antt Ant Ant Ant Ant Used Calc Used Calc Used Calc Used Calc Used the molt be molt	Calc Used Cato Used Cato mgl ba rogi ba rogi	Ant Ant Used Cato Used Cato the mod the mod the mod	Cato Used Cato regi bs. regi	Used Calo the mg/		-		32	Mit Calc Ibs Calc	6	ruot", "environmente environ", "environ" "greeche	, Sancar	anot'	Gal. (M gal)		Sofferred Bypessed Gal Gal (Migel) (Migel)		2	an ana concernant aproved approximation areas to a percentation terrary 1 2 3 4		10.2 5		1	In mp/L	L.
108.0 1.57 28.0 1.20 11.0 0.47	108.0 1.57 28.0 1.20 11.0 0.47	28.0 1.20 11.0 0.47	108.0 1.57 28.0 1.20 11.0 0.47	28.0 1.20 11.0 0.47	28.0 1.20 11.0 0.47	1.20 11.0 0.47	11.0 0.47		18.0	-	2.27	+	0	0.66 0.66	0.66	0.66	3 0.056	0/680	0.351		-	-	4,562	62 20,700	-	+	-	
110.0 1.52 50.0 0.43 19.0 0.62	110.0 1.52 50.0 0.43 19.0 0.62	110.0 1.52 50.0 0.43 19.0 0.62	110.0 1.52 50.0 0.43 19.0 0.62	100 0.43 190 0.62	100 0.43 190 0.62	0.43 19.0 0.62	19.0 0.82	_	210		2	-	0	0.06 0.066	0.66	0.65	9 0111	0.673	0.346	67		-	4,562	62 20,700	8	Η		
240 103 250 108	240 103 250 108	240 103 250 108	240 103 250 108	240 103 250 108	240 103 250 108	1.03 25.0 1.08	25.0 1.08	_	210		5	+	0	-	-			-	0.354	-		\$	-	-	8	-	-	1
17.0 0.74 14.0 0.61	17.0 0.74 14.0 0.61	88.0 1.03 17.0 0.74 14.0 0.61	17.0 0.74 14.0 0.61	17.0 0.74 14.0 0.61	17.0 0.74 14.0 0.61	0.74 14.0 0.61	14.0 0.61		121		1.44	-	0	-	-+	_		-	0.336	8	-	-	43 6,843	-	20	-	-	+
142.0 2.82 300 1.78 360	142.0 2.62 30.0 1.78 35.0 2.08	142.0 2.62 30.0 1.78 35.0 2.08	142.0 2.62 30.0 1.78 35.0 2.08	30.0 1.78 35.0 2.08	30.0 1.78 35.0 2.08	1.78 35.0 2.08	35.0 2.08		10	_	383	+	0 0		2010	-	160'0 5	-	0.257	-	1	3	-		8 1	-	+	+
703.0 1./0 12.0 0.58 2/.0 1.31	703.0 1./0 12.0 0.58 2/.0 1.31	703.0 1./0 12.0 0.58 2/.0 1.31	703.0 1./0 12.0 0.58 2/.0 1.31	121 0.12 000 071	121 0.12 000 071	0.00 2/.0 1.67	2/10 1.01	-	2 2	-	54.0	+	2 0	0010 0010	-	80		+	0.008	8	8	+	CO 0.063	+	00	+	+	t
101.0 1.00 27.0 1.00 27.0 1.00	101.0 1.00 27.0 1.00 27.0 1.00	120 0.55 250 114	101.0 1.00 27.0 1.00 27.0 1.00	120 0.55 250 114	120 0.55 250 114	0.55 250 114	250 114	-	19.0		232	+	0	-	-	_	0.115	0.640	10331	5	- 23	8	+	50,700	3 8	+	+	t
119.0 1.08 25.0 1.14 25.0	119.0 1.00 25.0 1.14 25.0 1.14	119.0 1.00 25.0 1.14 25.0 1.14	119.0 1.00 25.0 1.14 25.0 1.14	25.0 1.14 25.0 1.14	25.0 1.14 25.0 1.14	1.14 25.0 1.14	25.0 1.14		21.00		2.61	$\left \right $	0	-	-			-	0.323	-		52	2.281	-	99	\vdash		
0,009 120.0 1.61 27.0 1.22 26.0 1.18	0,009 120.0 1.61 27.0 1.22 26.0 1.18	0.009 120.0 1.41 27.0 1.22 26.0 1.18	120.0 1.61 27.0 1.22 26.0 1.18	27.0 1.22 26.0 1.16	27.0 1.22 26.0 1.16	1.22 26.0 1.18	26.0 1.16		21.00	2.65	13	-	0	-			\$ 0.124		0.338	5	55	*	48 6,843	-	90	+		1
128.0 1.91 28.0 1.26 27.0 1.22	128.0 1.91 28.0 1.26 27.0 1.22	128.0 1.91 28.0 1.26 27.0 1.22	128.0 1.91 28.0 1.26 27.0 1.22	280 126 270 122	280 126 270 122	1.26 27.0 1.22	27.0 1.22		21.00	264	3	+	0	-		_	111.0	-	0.341	-	1	-	47 2,281	-	09	+	+	1
128.0 2.03 200 0.91 27.0 1.22	128.0 2.03 200 0.91 27.0 1.22	128.0 2.03 200 0.91 27.0 1.22	128.0 2.03 200 0.91 27.0 1.22	200 0.91 27.0 1.22	200 0.91 27.0 1.22	0.91 27.0 1.22	27.0 1.22		19.00	1.81	6	+	0	-			112	-	0.322	54	8	20	-+	-	8	+	+	+
89.0 1.18 29.0 1.17 29.0 1.17	89.0 1.18 29.0 1.17 29.0 1.17	89.0 1.18 29.0 1.17 29.0 1.17	89.0 1.18 29.0 1.17 29.0 1.17	8 29.0 1.17 29.0 1.17	8 29.0 1.17 29.0 1.17	1.17 29.0 1.17	29.0 1.17		23.00	181		+	0	-			0.118		0.384	-+	+	+	44 2,281		8	+	+	+
167/0 3.11 38.0 1.87 1.80	16/.0 3.11 380 1.87 1.80 0.64	380 187 180 064	16/.0 3.11 380 1.87 1.80 0.64	380 187 180 064	380 187 180 064	187 180 064	13.0 0.64		0.00		8 14	+		-		-	0.113	-	0.307	4	4	+	+		8	+	+	+
280 1.10 1.20 0.46	280 1.10 1.20 0.46	1.10 1.20 0.48	280 1.10 1.20 0.46	280 1.10 1.20 0.46	280 1.10 1.20 0.46	1.10 1.20 0.48	800 001		15.00		118	+	0 0	990 990	80	800	0.125	0.750	180.0	4	8	40	3/ 4,062	00//02 20	8 8	+	+	t
250 142 150 085	250 142 150 085	250 142 150 085	250 142 150 085	250 142 150 085	250 142 150 085	1.42 150 085	15.0 0.85	-	17.00	14	2,14	+	2 0	-	-	-	0600	-	0.267	+	8	52 4	45 4.562	+	3 8	+	+	t
90.0 1.38 20.0 0.53 20.0	90.0 1.38 20.0 0.53 20.0 0.53	90.0 1.38 20.0 0.53 20.0 0.53	90.0 1.38 20.0 0.53 20.0 0.53	20.0 0.93 20.0 0.93	20.0 0.93 20.0 0.93	0.93 20.0 0.93	20/0 0.53		16.00	N	2.05		0	-	-			-	0.332		13	+	+	+	8	-	-	t
t16.0 2.42 25.0 t.47 32.0 1.88	t16.0 2.42 25.0 t.47 32.0 1.88	25.0 1.47 32.0 1.88	t16.0 2.42 25.0 t.47 32.0 1.88	25.0 1.47 32.0 1.88	25.0 1.47 32.0 1.88	1.47 32.0 1.88	32.0 1.88	-	10.00		2.06		D	0/08 0/08	0.66	00/00	0000	0.474	0.244	ŝ		82	36 4,562	50,700	00	-		
0.009 115.0 1.95 29.0 1.43 32.0	0.009 115.0 1.95 29.0 1.43 32.0 1.67	0.009 115.0 1.95 29.0 1.43 32.0 1.67	115.0 1.95 29.0 1.43 32.0 1.57	29.0 1.43 32.0 1.67	29.0 1.43 32.0 1.67	1.43 32.0 1.57	32.0 1.57		22.00	2.9	3 3	+	0	-					0.301	-+-	1	3	-	-	8 1	+	+	+
901 000 001 000 0	901 000 001 000 0	921 045 901 046 911 026	901 000 001 000 0	901 000 001 000 0	901 000 001 000 0	901 0.00 001	901 008	-	00.96			+		0000 0000	000	9920	0.126	0.718	0280	5	5 3	10	40 0,040 8 8,848	42 21/000	8 8	┼	t	t
1 310 120 360 139	1 310 120 360 139	1 310 120 360 139	1 310 120 360 139	1 310 120 360 139	1 310 120 360 139	1.20 360 1.39	36.0 1.39	-	13.00		1.38	+	0	-	+			-	0.383	4	+-	+	+	-	8	+	+	t
04 0.009 120.0 1.53 30.0 1.16 34.0 1.34 22.00	30.0 1.15 34.0 1.34	200 1.15 340 1.34	30.0 1.15 34.0 1.34	30.0 1.15 34.0 1.34	30.0 1.15 34.0 1.34	1.05 34.0 1.34	34.0 1.34	-	122	0 2.26	8		d	0.66 0.66	0.68	0.66	0.125	0.775	0.399		-	4	41 4,562	82 20,700	8			
0.010 144.0 1.99 31.0 1.30 35.0 1.47	0.010 144.0 1.99 31.0 1.30 35.0 1.47	31.0 1.30 35.0 1.47	31.0 1.30 35.0 1.47	31.0 1.30 35.0 1.47	31.0 1.30 35.0 1.47	130 350 147	35.0 1.47		24.0		R		0	0.66 0.66	0,68			0.714	0.368	87		8	4,562		8	_	-	
0.000 1350 1.81 23.0 1.29 26.0 1.02	0.000 133.0 1.81 33.0 1.29 26.0 1.02	0.000 133.0 1.81 33.0 1.29 26.0 1.02	1 330 129 280 102	1 330 129 280 102	1 330 129 280 102	129 280 1.02	26.0 1.02		2		8	-	0	-	-	-		-	0.374	-	9	-	-		8	+	+	-
0.000 126.0 1.89 30.0 1.96 32.0 1.45	0.000 126.0 1.89 30.0 1.96 32.0 1.45	0.000 126.0 1.89 30.0 1.96 32.0 1.45	126.0 1.89 30.0 1.36 32.0 1.45	30.0 1.36 32.0 1.45	30.0 1.36 32.0 1.45	1.86 32.0 1.45	32.0 1.45	_	N I		8	-	9	-	-+	_		-	0.339	¥	1	10	34 6,843	+	8	+	+	1
32.0 1.14 35.0	32.0 114 35.0 124	32.0 114 35.0 124	32.0 114 35.0 124	32.0 114 35.0 124	32.0 114 35.0 124	1.14 350 1.24	350 124	-		1 200	8 1	+	0	-		_	0.141	-	0.453	-	8	-	-	-	8 1	+	+	+
401 07% 001 016 ET1 0701 0700	100 1000 100 100 100 100 1000 1000	1075 071 076 ET1 076	K1 07 001 010	K1 07 001 010	K1 07 001 010	1 n7 81	107	_				+		1000 0000	1000	Ba	0.136	0.000	0.420	2 1	1	2 6	CHO/D 14	11 11 11	8 5	+	+	t
										1	+	-	0	_	+			-		+		-	-	+		╞	╞	t
										13		1			- C C.					1	1				+			
RTW Sample Temp 14.8 1C TDS 242.0 mod Colorer	RTW Sample Temp 14.8 1C TDS 242.0 mod Colorer	The Ad 0 and Copare	The Ad 0 and Copare	The Ad 0 and Copare	The Ad 0 and Copare	Colesce	Colesce	Colorism H	4. 2 2	test of	reity 26	Akatrity 264.0 mgl.			Sullah	Sultate 64.8 mg/L	Ten								_			
DH 8.13 BU	DH 8.13 BU	DH 8.13 BU	- Internet	- Internet	- Internet	- Internet	- Internet	0	0	10	Chloride 31	31.0 molt	100												_			
													CHLORINATION	CHLORINATION					FLUORIDATION	NOID	1							
												T	10	Chlorine Gas						Hydroft	nosil	Hydrofluositicio Apid 23	12	2				
			I certify that the information in this report is complete	rithy that the information in this report is complete	la information in this report is complete	tion in this report is complete	his report is complete	is complete	1.2			_	Cer	Calcium Hypochiorite,	Monte.					Sodium Fluorida	Flue	- NON	4¥		_			
To Pluctricio Solution Field and accurate to the best of my knowledge % BisudiseSolution Field Reported by Cent or Req.	and accurate to the best of my kr	and accurate to the best of my kr	to the best of my ki	to the best of my ki	to the best of my knowledge	at or my knowledge	agbamons						000	Sodium Hypochiorite _12.5	hiorito.		8			Oher			1	2	_			
W Discolution Sold Joint Easterialis Samt	Reported by	Reported by				Cert of Req.	Cert or Req.	het				-	5	Chlorine Test Kit Used:	Of Used.		į			Type o	A Tour	d Instrue	Type of Test Instrument Used	T	_			

Attachment A Page 1 of 2

DN Pumping Totals	C 1	NOISI	SP PUB	DWSION OF PUBLIC WATER SUPPLIES	ER SUPI	PLIES		1				FOR	FOR MONTH OF Chemical Test	OF al Test	April 2018	April 2018								Ē	Membrane Integrity Test	Integrit
		-			Raw			-	Pre Filter	Jan 1		Post Filler	ther	Part .	PostEX					Finished	pe		ľ		Pot	Post Filter
Vitater Plant	Flant	_			-	TR.	-	Fotal To	Tot Ioi	18	-	i Totsi	Mem	194	14	-	Total	-	-			Dist	Dist Clines	100		
(Migal) (Migal) (Migal)	Vester (M gal)		£	femp deg. C	NA N	Hard.	e e E de		ngt mgt	-	2 Mar	L mgt	<u>s</u> e	e té	ā ģ	E.	Alk mg/	mat	2 Tél	1 월	- 2	- 1	T = Total	1	Bank 1 Bank 2 Bank 3	ank 2 1
1.031 0.924 0.009 7	-	-	7.31	13.4	282	350 0.1	0.50 0.	0.204	0:380	90 0.027	1	0.034	4 0.17			7.84	280	101	0.01	0.008	8 0.77	-	1.0	1.19		
0.914 0.005			142	13.1	280	356 01	0.63 0.	0.205	0.41	0.410 0.028	8	0.035	_			7,80	260	+	0.01	0.010		10	27	1.01	t	T
1.040 0.919 0.009 7	600.0		12.71	13.6	280	350 0.	0.55 0.	0.202	0.36	0.367 0.020	0	0.023	3 0.20			7.78	274	108	0.01	0000	0.53	0.9	1.1	1.08		
0.968 0.903 0.008	0.008		727	14.1	280	350 0.	0.72 0.	0.240	0.36	0.368 0.041		0.039	9 0.38			7.55	274	108	0.01	0.039	020	1.1	1.1	1.19	-	
0.756 0.666 0.009	0.009		204	13.6	280		0.41 0.	0.201	0.360	810.0 08	9	0.023	3 0.36			1.96	280	110	10.0	0.023	0.00	1.0	1.1	1.13		
0.909 0.816 0.005 7.25		-	7.25	13.7	-	-	-	0,186	0,36	0.364 0.027	11	0,037	7 0.30			1,43	280	110	0.02	0.013	3 0.91	1.1	1.2	1.39		
1,123 1,007 0,013 7,34	_	-	1,34	13.2	-	-	_	0.203	0.33	0.377 0.031	Ŧ	0.030	0 0.17			7.82	282	106	0.01		58:0	10	6.0	1.05		
0.973 0.865 0.009 7.53			153	132	-	-	_	0.214	0.36	0.366 0.044	3	0.033	3 0.15	_		7,50	286	110	0.00	0.013	3 0.65	9.6	0.8	1.15		
0.850 0.868 0.008	0.003		7.43	13.4	-	-	-	0.190	0.34	0.341 0.016	9	0,006	6 0.31			7,60	270	110	0.02	0.008	3 1,06	1.0	1.2	1.10		
0.995 0.874 0.009 7.33			1.33	13.9		-	_	0.204	0.35	0.352 0.027	11	0.027	r 0.29			7.53	270	130	0.81	0.009	0.00	12	1.6	1.15		
1.000 0.877 0.009			7.25	13.5	260	300 0.2	0.51 0	181.0	0.33	0.370 0.007	10	0.027	7 0.46			7.42	270	120	0.01	0.006	5 1.08	1.2	1.3	1.04		
0.947 0.873 0.005			7.01	150	280	360 0.0	0.53 0.	0.201	0.356	56 0.022	25	0.031	1 0.29			7.47	280	110	0.01	0.010	0.85	1.2	1.3	1.27		
1.130 0.984 0.013			7.04	13.8	260	340 0.5	0.50 0.0	0.153	0.359	Se 0.016	9	0,040	0 0.35			7.04	200	120	0.01	0.005	5 0.75	1.3	1.4	1.26	F	
0.002 0.803 0.005			7.45	145	200	356 0.7	0.51 0.	0,202	0.33	0.371 0.024	*	0.038	8 0.15			7.75	275	106	0000	0.008	690 6	11	1.3	1.32	-	
1.137 1.043 0.013			0.013 7.58	13.5	288	360 0.2	0.37 0.	0.202	0.41	0.416 0.021	E	0.021	1 0.14			7.80	286	102	0.00	0.011	96.0	1.1	1.5	1.35		
1.261 1.108 0.009	_		7.16	12.8	270	340 0.6	0.61 0.	0.200	0.35	0.395 0.027	0	0.045	5 0.85			7.44	270	130	0.01	0.014	1 0.75	1.4	1,6	1.24	-	
0.785 0.696 0.009	-		7.21	13.1	-			0,156	0.42	0.420 0.034	x	0.034	4 0.52			7.44	270	140	0/04	0.018	11.11	12	1,3	1,00	-	
0.977 0.849 0.009	-	12.2		13.7	-		0.78 0.	0.204	0.35	0.358 0.019	0	0.032	2 0.88			7.70	260	100	0.01	0.008	95'0 8	1.2	19.10	1.24		
0.710 0.673 0.004		100		13.3	-			0.204	0.36	0.360 0.021	E	0.037	7 0.77			7.05	200	130	0.01	0.007	0.78	1.2	1.3	1.01		
0.886 0.806 0.009		1.00		12.8	270	360 0.0	0.52 0.	0.196	0.38	0.382 0.019	a	0.043	3 0.33			7.83	250	130	0.01	0.011	0.92	1.3	1.8	1.16	-	
1.063 0.872 0.009	_	100	7.34	13.9	-		_	0.213	0.38	0.362 0.021	11	0.001	0.19			7.72	280	110	0.03	0.017	0.79	0.6	1.0	1.22		
1,088 1,028 0,00		a	0.000 7.04	13.2	-		_	0.207	0.44	0.446 0.020	8	0.023	3 0.43			7.04	270	130	0.01	0.013	9 0.64	0.8	12	1,35		
1.126 1.022 0.01		-	0.014 7.39	13.5	-			0.201	0.36	0.368 0.023	8	0.018	8 0.41			7.51	270	130	0.01	0.019	20.0	1.0	1.1	122		
1.174 1.004 0.009		-	7.41	14.8	280			0,196	0.35	0.355 0.019	6	0.020	0.39			121	280	130	0.01	0.007	0.76	1.0	1.2	1.30		
1.082 0.945 0.010	_	0		14.8	-		_	0.200	0.36	0.365 0.016	9	0.024	1 0:30			7.04	270	120	10.0	0,008	0.93	1.0	1.1	1.41		
1,100 1,000 0,000		8		14.2	-		_	0.200	0.35	0.357 0.024	X	0.027	7 0.22			7.80	280	064	000	0.011	0.74	8.0	1.1	1.02		
0.987 0.873 0.008	_	8	7.04	14.8	-		_	0.218	0.37	0.376 0.014	4	0.026	\$ 0.32			7,50	270	044	0.01	0.006	1.26	6.0	1.1	121		
1.333 1.114 0.013		10	7,52	13.0	200	300 035	0.80 0.3	0.214	0.35	0.356 0.023	E	0.025	5 0.29			7,80	280	110	10.0	0.011	0.79	80	0.0	1.32		
1.103 1.078 0.005	-	8	1.47	13.8	-			0.208	0.40	0.402 0.022	12	0.026	5 0.20			27,60	270	120	10.01	0100	0.95	1.2	1.4	1,15		
1.237 1.100 0.013		13	7.43	14.2	270	360 0.0	0.61 0.	0.193	0.36	0.364 0.004	x	0.011	0.25			7,60	270	110	0.01	0.011	1.10	80	6.0	1.13	-	
						-	-	-	-	_	_	_														
27.51																										
1.1																										
200		-																								
200						-		┝				CHLO	CHLORINATION	N						FLUO	FLUORIDATION	2	L	Τ		
	_					_		-				Type o	Type of Chiorine Used	te Used						Type	Type of Fluoride Used	le Used		-		
		- 4			3										Chorine Gas	e Gas		1000			Hydrod	uosilicio.	3	*		
	Oertil	Sec. 1	I certify that the	I certify that the information in this report is	on in this	information in this report is complete	ompletio								Catour	Calcum Hypodsonia 13 8	auto -	-			Sodum	Sodum Fluonde				
% Bruffle Solution Fed Reported by	Reports		d by:	Non Non	And Ann P	Cent or Req.	it a								Chlorine	Chlorine Test R01 Used:	Used:				Type o	of Teest Inc	Type of Test Instrument Used:	laed:		
W. Cheverbate Column Fair Randolds Car	County-	4	10000									_												-		

