

WOODARDCUITAN.COM COMMITMENT & INTEGRITY DRIVE RESULTS

Monthly Operating Report

March 2017

0217327.00 So. Sangamon April 18, 2017

TABLE OF CONTENTS

SECTION

Exe	cutive Sum	ımaryl	ES-1
1.	SAFETY		1-1
	1.1 1.2 1.3 1.4	Safety Training Lost time Accidents Safety Audit Miscellaneous Safety	1-1 1-1
2.	COMPLIA	NCE, FLOWS AND LOADINGS	2 - 2
	2.1 2.2 2.3 2.4	Compliance Influent flows and loadings Effluent Concentrations Lagoon Discharge Concentrations	2-2 2-2
3.	OPERATI	ONS	3-1
	3.1 3.2 3.2.1 3.3	Events impacting operations Emergency & Service calls Emergency Call-outs Customer Inquiries	3-2 3-2
4.	MAINTEN	ANCE AND REPAIR	4-4
	4.1 4.2	Preventative and predictive maintenance Corrective repairs	
5.	PROJECT	MANAGEMENT & SUPPORT	5-1
	5.1 5.2 5.3	Staffing & Training Corporate Support Budget	5-1
6.	CAPITAL	PLANNING	6-1
	6.1 6.2	Approved CIP Projects Current status Draft Capital Improvement Plan	

LIST OF TABLES

TABLE	PAGE NO.
Table 2.2 Influent Concentrations and Flow	2-2
Table 2.3 Finished Water Quality	2-2
Table 2.4 Weekly Grab Sample Analysis Results	2-3
Table 4.1 Budget Table	5-2

EXECUTIVE SUMMARY

Safety. Safety is the number one priority at Woodard and Curran. We continue to provide monthly training for employees at the plant, provide weekly safety updates and safety videos are assigned to all employees. The safety topic for this month was "Preventing Back Injuries". There were no lost time accidents in the month of March 2017. Approximately 74 percent of the items identified in the combined list of safety items have been completed.

Compliance. The finished water quality was within regulatory limits and all reporting and sampling requirements were met for the month. A copy of the Operations Report submitted to the Illinois Environmental Protection Agency is included in this report as Attachment A.

Operations. There was 1 emergency call-outs for the month. There were 3 customer inquiries for the month.

<u>New Sodium Permanganate Pumps.</u> The new Sodium Permanganate pumps were put into service on March 28, 2017. The picture on the left are the new pumps being utilized. During a routine Engineering Evaluation by the Illinois Environmental Protection Agency (IEPA) in 2015, SSWC was mandated by IEPA to have the Ultra Filter effluent below the secondary standard of 0.05 mg/L prior to Ion Exchange. With this change, the Chemical Feed Pumps major project funded in FY 2017 is complete.

<u>Consumer Confidence Report.</u> The Consumer Confidence Report (CCR) for 2016 has been prepared and has been approved by the IEPA. This annual report is required to be distributed to all customers in the water district prior to June 30, 2017. Information required by SSWC to be distributed to satellite water agency so they can prepare their own CCR was emailed to the village of Chatham, New Berlin, Curran Gardner Water District and EJ Water on April 14, 2017. A copy of the CCR is included as Attachment B at the end of this document.

Maintenance and Repair. For the month of March 2017, there were 12 inspections, 16 preventative and 2 corrective maintenance activities completed.

Budget. Through March 31, 2017, we are \$44,540 over budget for the fiscal year.

Capital Planning. Woodard and Curran is working with Meco Engineering to update and prioritize the Capital Improvement Plan. The CIP is a planning document that includes all projects anticipated to exceed \$5,000 in cost over the next five years. The CIP is an ongoing process and will be refined from time to time as projects are completed and new issues are identified.

1. SAFETY

1.1 SAFETY TRAINING

Woodard and Curran continues to provide safety training for personnel at the plant. This is accomplished by requiring daily safety meetings, weekly safety updates are available to the plant, and safety videos are assigned to all employees and are required to be completed. The March 2017 safety training topic was "Preventing Back Injuries".

1.2 LOST TIME ACCIDENTS

There were no lost time accidents in the month of March 2017.

1.3 SAFETY AUDIT

Since Woodard and Curran assumed operational responsibility for the SSWC plant, two safety audits have been completed. The first audit was conducted in May 2015 and identified 89 items needing to be addressed. Approximately 86 percent of those items identified had been addressed when a second audit occurred in November 2016.

The finding for these two audits were combined to produce a list of 42 items needing to be addressed. A safety audit conference call with Shannon Eyler was held on January 25, 2017. To date, 74 percent of the items have been addressed. Remaining items are being addressed at time permits and as funding becomes available.

1.4 MISCELLANEOUS SAFETY

Dan Held and Keith Sommers have completed Powered Industrial Truck training.

2. COMPLIANCE, FLOWS AND LOADINGS

2.1 COMPLIANCE

The finished water quality was within regulatory limits and all reporting and sampling requirements were met for March. A copy of the Operations Report to the Illinois Environmental Protection Agency (IEPA) is included in Attachment A of this report

2.2 INFLUENT FLOWS AND LOADINGS

The total gallons pumped from the well field was 37.4 MG. The influent parameters were all within the normal range.

		Tab	le 2.2 Infl	uent Conce	entrations a	and Flow		
	рН	Temp	Iron	Manganese	Fluoride	Hardness	Alkalinity	Well Flow Gals (k)
Max.	7.76	14.6	1.35	0.213	-	390	298	1.536
Min.	7.31	12.9	0.67	0.169	-	356	284	0.680
Avg.	7.41	13.6	0.99	0.190	-	373	291	1.209
Total	-	-	-	-	-	-	-	37.468

The influent flow and loadings are summarized below in Table 2.2

2.3 EFFLUENT CONCENTRATIONS

The facility filtered 33.1 MG during the month with a daily average of 1.06 MG and a min/max of 0.6/1.4 MG.

				Table	2.3 Fir	nished Wat	er Qualit	у		
	Free CL2	Total CL2	рН	Temp	Iron	Manganese	Fluoride	Hardness	Alkalinity	Phosphate
Max.	1.4	1.6	8.01	15.3	0.01	0.037	0.98	170	292	2.13
Min.	0.9	1.1	7.67	12.8	0.01	0.006	0.63	110	260	0.78
Avg.	1.2	1.4	7.87	13.6	0.01	0.012	0.80	124	276	1.21
MCL	-	-	-	-	1.00	-	4.00	-	-	-
SMCL	-	-	-	-	0.30	0.050	2.00	-	-	-

2.4 LAGOON DISCHARGE CONCENTRATIONS

The results for the NPDES lagoon discharge permit are summarized below.

	L	_agoon Eff	luent Results	5		
Date	Fe (mg/l)	Mn (mg/l)	Chloride (mg/l)	Cl² (mg/l)	pH (S.U.)	TSS (mg/l)
03/07/2017	0.230	0.114	242	0.030	8.09	0.00
Minimum	-	-	-	-	-	-
Maximum	-	-	-	-	-	-
Average	-	-	-	-	-	-
Monthly Avg Limit	2.000	1.00	-	-	-	15
Daily Limit	4.000	2.000	500	0.05	6.0-9.0	30

Table 2.4 Weekly Grab Sample Analysis Results

The Chloride sample for the month of March 2017, performed by the Springfield Metropolitan Sanitary District, was 14,800 mg/L. The limit for chloride discharge to the sanitary district is 30,000 mg/L

.

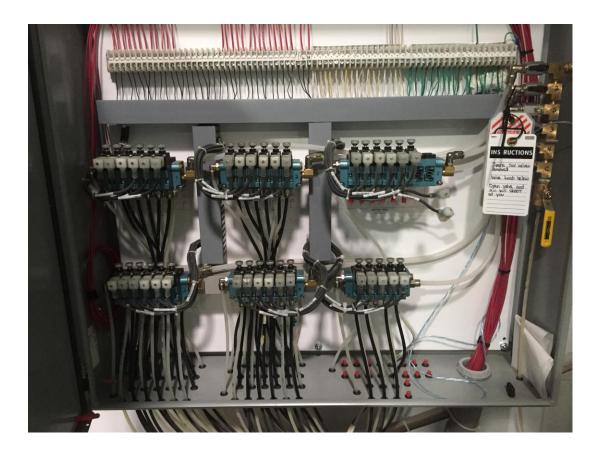
3. OPERATIONS

3.1 EVENTS IMPACTING OPERATIONS

New Sodium Permanganate Pumps. The new Sodium Permanganate pumps were put into service on March 28, 2017. The picture on the left are the new pumps being utilized. The picture on the right is the pump originally supplied for pumping Sodium Hypochlorite. During a routine Engineering Evaluation by the Illinois Environmental Protection Agency (IEPA) in 2015, SSWC was mandated by IEPA to have the Ultra Filter effluent below the secondary standard of 0.05 mg/L prior to Ion Exchange. With this change, the Chemical Feed Pumps major project funded in FY 2017 is complete.

Consumer Confidence Report. The Consumer Confidence Report (CCR) for 2016 has been prepared and has been approved by the IEPA. This annual report is required to be distributed to all customers in the water district prior to June 30, 2017. Information required by SSWC to be distributed to satellite water agency so they can prepare their own CCR was emailed to the village of Chatham, New Berlin, Curran Gardner Water District and EJ Water on April 14, 2017. A copy of the CCR is included as Attachment B at the end of this document.

3.2 EMERGENCY & SERVICE CALLS


Service Calls:

• There were no service calls for the month.

3.2.1 Emergency Call-outs

There was one emergency call-out for the month requiring operational personnel at the plant after normal business hours.

• On Sunday, March 26, 2017, an issue developed with the Ion Exchange units. Specifically, valves on IEX #1 and IEX #3 would not operate. Working with the solenoids in the cabinet pictured below, and after considerable troubleshooting, Keith Sommers was able to detect the problem and complete repairs. There was no disruption of service.

3.3 CUSTOMER INQUIRIES

There were 3 customer inquiries for the month of March:

- On March 2, 2017, Mr. Edgar Gregory contacted the SSWC regarding higher than normal water usage.
- On March 27, 2017, Mr. Dean Swingler of EJ Water requested an analysis of the water for a potential customer.
- On March 29, 2017, Mr. Mark Poffinbarger contacted us regarding the possibility of purchasing water from the SSWC.

4. MAINTENANCE AND REPAIR

4.1 PREVENTATIVE AND PREDICTIVE MAINTENANCE

For the month of March 2017, there were 12 inspections, 16 preventative and 2 corrective maintenance activities completed.

4.2 CORRECTIVE REPAIRS

• Adjustments were made to the Caustic pump suction on March 13, 2017. This allows for easy access the foot valve at the bottom of the adjacent barrel of Caustic for cleaning and maintenance. Pictured below is the Caustic pump following the changes.

Adjustments were made to the Aerator timers. These adjustments were made to preserve the life of the motors and electrical savings. Pictured below is the SCADA screen where the operator can control how the Aerator functions.

AERATOR # 1 STARTS TODAY 4	AERATOR #1	WELLS OFF	AERATOR #2	AERATOR # 2 STARTS TODAY 4
YESTERDAY 13 TOTAL 58538 AERATOR # 1 RUNTIME	STOPPED	12.1 FL.	STOPPED	YESTERDAY 13 TOTAL 58539 AERATOR # 2 RUNTIM
TODAY 2.7 HRS YESTERDAY 15.8 HRS TOTAL 29950.2 HRS	AVAILABLE IN REMOTE	RAW WATER FLOW 0GPM	AVAILABLE IN REMOTE	TODAY 2.7HR YESTERDAY 15.8HR TOTAL 29965.8HR
	ALARM STATUS AERATOR #1 OVERLOAD NORMAL AERATOR #1 LOSS OF FLOW NORMAL AERATOR #1 FAIL TO START NORMAL	ALARM SETPOINT LOW FLOW RATE 0 GPM HIGH TANK LEVEL 12.5 FT.	ALARM STATUS AERATOR #2 OVERLOAD AERATOR #2 LOSS OF FLOW NORMAL AERATOR #2 FAIL TO START NORMAL	
	BYPASS TOGGLE	LOW TANK LEVEL 10.8 FT.	BYPASS TOGGLE	
		DELAY AFTER WELL STOPS FOR AERATORS TO CONTINUE RUNNING 0 MINUTES		
WELL CONTROL 01	ERVIEW	PLANT MANUAL RESET		
HISTORY ACKNOWLE	LOGOUT	Tene In Tene Last Status 44.55 569 20.44.55 569 CFN WESTECH DETENTION TANK HIGH 18.39 132 16.16.39.898 CFN WELL 2 LOW FLC BATTERY ALARM	Description	AM_WT_DETE WELLIZ_ALARY IN ()
CKNOWLEDGE	GUEST			

5. PROJECT MANAGEMENT & SUPPORT

5.1 STAFFING & TRAINING

- Woodard and Curran continues to train and provide staffing to the plant as needed.
- Woodard and Curran IT staff are working with plant personnel on Hach Wims. Hach Wims is the programmed utilized by Woodard and Curran for developing IEPA Monthly Operating Reports and storage of test data. We are working through the issues discovered with the reporting earlier in the year as time allows.

5.2 CORPORATE SUPPORT

The following individuals, either on-site or remotely, provided assistance in operation and/or maintenance of the plant during the month.

- Marc Thomas
- Joe Hurley

• Shannon Eyler

Bobby Nichols

• Ray Giguere

5.3 BUDGET

Table 5.3 below is a breakdown of the current budget as of March 31, 2017.

Budget Category	Month Budget	Month Actual	YTD Budget	YTD Actual	Annual Budget	Over (under)	% of budget
Labor (D.L. + OH)	\$22,926	\$23,102	\$252,189	\$270,594	\$275,115	\$18,405	98%
Utilities	\$8,113	\$15,268	\$89,238	\$90,185	\$97,350	\$948	93%
Chemicals	\$14,875	\$11,566	\$163,625	\$156,075	\$178,500	(\$7,550)	87%
Maintenance & Repair	\$7,925	\$12,097	\$87,175	\$108,213	\$95,100	\$21,038	114%
Chloride	\$11,688	\$11,405	\$128,572	\$138,351	\$140,260	\$9,779	99%
Lab Supplies and Equipment	\$1,946	\$480	\$21,409	\$17,428	\$23,355	(\$3,981)	75%
Office Supplies	\$267	\$81	\$2,933	\$2,870	\$3,200	(\$63)	90%
Miscellaneous Expenses	\$1,243	\$1,790	\$13,671	\$14,978	\$14,914	\$1,307	100%
Other Operating Costs	\$339	\$1,188	\$3,733	\$4,341	\$4,072	\$608	107%
Subtotal of Costs for Contract Year 2	\$69,322	\$76,977	\$762,544	\$803,035	\$831,866	\$40,491	97%
Fixed Fee for Contract Year 2	\$6,932	\$7,698	\$76,255	\$80,303	\$83,187	\$4,049	97%
Year One Transition	\$1,366	\$1,366	\$15,023	\$15,023	\$16,389	\$0	92%
Total	\$77,620	\$86,040	\$853,822	\$898,361	\$931,442	\$44,540	96%

Table 5.3 Budget Table

6. CAPITAL PLANNING

6.1 APPROVED CIP PROJECTS CURRENT STATUS

No new information is available.

6.2 DRAFT CAPITAL IMPROVEMENT PLAN

The CIP is a planning document that includes all projects anticipated to exceed \$5,000 in cost over the next five years. The CIP is an ongoing process and will be refined from time to time as projects are completed and new issues are identified.

A meeting was held on February 17, 2017 to begin update of the Capital list. Those in attendance were Marc Thomas, Dan Held and Keith Sommers from Woodard and Curran as well as Max Middendorf from Meco Engineering.

		Dimeine Tetate	adate -					Cham	Chemicale Amiliad	mind		E.		5		III Cilbare	2					Collegan	-			-		Philada	
L	-	Bushun		T	Chlorine	t	Fluorid	ide PI	Phosphate		NaMeO4	18	Bi-Sulfite	1.	util day indicate total restlar of hours sind	divertion of	Choice sin	Mash	Water	Water	- and	SORDAGE	1.1	S I am	Soft Report			appoort	
		UF Gal, Water	tater	_		-	-		-	٩ ;		-	-	1	ous backwork. If backwarked at reicht	T backwaits	od at mid-t		377	-		Nurs increasing man		-	-	ps		In molt	
Date Meter Read	Ran 1	(M gal) (M gal) (M gal)	(and)		D E C	Topic Calc	lba. n	mg/l lb	Used Calc Ibs. mg/l		Used Calo Ibs. mg/	A lbs.	mg/		Internet Transformer / Transformer	tomore provident	unon .	(Mgal)	(Migel)	(M gel)	<u>n</u>	increasing a sub-tag	within of well-face trade-	The Contract	ed Water	t -			
	+		-			-	-	-	-+-		-	_	-	-	-			-			-	N	+	4	-	IEX 1	1 IEX2	IEX	3 IEX 4
7.00	+	19.4 1.347 1.229 0.008 189.0 13.0 0.042 1.216 0.013 133.0	216 0	0.013 1	-	2.10 1	17.0 0	0.55 28	28.0 0.90	80 14.28 50 14.28	28 1.27		-	0.75	5 0.75	0.75	0.75	0.136	0.030	0.458	8	4	21	6,843	43 31,050 81 10 350	00 9	-	+	+
7:00	+	0.915 0.094	0.04 0	0.005	+	-	+	+	+	_	+		+	0.75	1	-	-	-	0.604	0.311	44		46	+	+	00	-	-	+
7:00	+-			0.009 1	167.0 2.	-	17.0 0	÷	23.0 1.10		28 1.74	-	-	0.75	1	+		-	0.649	0.334		70	-	47 4,562	1	00	-	-	┝
7:00	18.9	1.303 0.918 0.008 173.0	918 0	1 800'		1.99 3	30.0 1	1.29 26	26.0 1.12	12 17.13	13 1,58		-	0.75	5 0.75	0.75	0.75	0.130	0.060	0.443	47		45 3	+	-	05	-	-	┝
7:00	18.2		1.196 0	0.013 183.0		2.16 3	34.0 1	1.12 26	26.0 0.66	96 17,13	13 1.62	-		0.75	5 0.75	0.75	0.75	0.130	0.837	0.431	36	5	35	6,843	-	50		-	-
7:00	19.5	1.188	1.177 0	0.013 1	169.0 2	2.13 1	13.0 0	0.44 27	27.0 0.91	91 17.13	13 1.73			0.75	5 0.75	0.75	0.75	0.131	0.784	0.404			05	32 2,281	81 10,350	80		-	-
7:00	13.8	0.937	1.147 0	0.009 1	127.0 2.	2.03 1	16.0 0	0.55 16	16.0 0.55	\$5 17.13	13 2.19	-		0.75	5 0.75	0.75	0.75	0.073	0.618	0.319	42	53	40 3	39 9,124	24 41,400	00			-
7:00	15.7	1.073 0.861		0.018 1	161.0 2.	2.25 3	34.0 1	1.56 15	15.0 0.69	89 11.42	42 1.28	-		0.75	5 0.75	0,75	0.75	0.113	0.708	0.365			-	0					-
7:00	18.1	1.282	0.994 0	0.000 2	204.0 2.	2.38 1	18.0 0	0.72 35	35.0 1.39	99 17.13	13 1.60	0		0.75	6 0.75	0.75	0.75	0.118	0.846	0.435	46		46 3	39 6,843	43 31,050	20			
7:00	15.7	1.076	1.163 0	0.013 1	175.0 2.	2.44 2	25.0 0	0.85 36	36.0 1.22	22 17.13	13 1.91	-	_	0.75	6 0.75	0.75	0.75	0.114	0.710	0.366		85	-	2,281	61 10,350	05		_	
7:00	-			0.009	-	-		-	-	-		-	-	0.75		-	-	-	0,698	0.360	42		43	-		20			-
_		1.078		0.008 154.0	+	-		-	33.0 1.38	-	57 0.95	10	-	0.75	-	-	0.75	0.107	0.711	0.367	-	8	-	38 4,562	62 20,700	00	_	_	-
_	+		0.959 0	0.009 151.0	-	-+	-	+	\rightarrow	-	-		+	0.75	-	-	-		0.683	0.352	45		45	-	-	8	-	+	+
15 7:00	-		156	6007			-	-	-	-		-	-	0.75	-		-		0.706	0.364	1	+	-	40 2,281	+	8	+	+	+
7.00	1	15.7 1.100 0.974 0.004 145.0 1.98 45.8 4.400 4.008 0.047 480.0 2.45	4/6	1004	0.04	+	28.0 1	1.14 30	30.0 1.22	14.28	28 1.26		-	0.75	6 0.75	0.75	0.75	0.104	0.726	0.374	47	8	10	-	-	8 5	+	+	+
2.00	+	1152 1.004 0.007	0 100	200	184.0 2.50	+	-	-		_	_		+	0.76	_				0.760	0.302	46	2	+	200 9,0000 200 6 040	44 54 0E0	3 5	-	-	+
7:00		_	033 0	110		+	-	+	+		-		-	0.75	1	-	+		0.733	0.378	4	5	39	-	+	8		+	+
7:00	16.2	1.113 1.024	024 0	0.008 1	151.0 2	2.03 10	10.0 0	0.39 33	33.0 1.28	14.28	28 1.54	-	-	0.75	5 0.75	0.75	0.75	0.111	0.735	0.378			37	7 2,281	81 10,350	8		-	-
7:00		1.123 1.015 0.005	015 0	1 900		-	21,0 0	-	28.0 1,09	11.42	42 1.22		_	0.75	5 0.75	0.75	0.75	0.093	0.741	0.382	42	8	40 35	5 9,124	24 41,400	00			_
_			001 0	0.017 1	_	-	27.0 1	-	-	_			_	0.75	5 0.75	-	0.75	0.092	0.698	0.360			41	2,281	81 10,350	05		_	_
23 7:00	-		975 0	1 900		-	-	-	-+	-+	_	-	+	0.75	-	-	-		0.713	0.367	45	5	4	-	-	20	_	_	-
7:00	+		978 0	1013	-+			-	-+	-+		-	_	0.75	-	-+	-+	-+	0,666	0.343			41		-	05	_	_	-
7.00	+	_	936 0			-	-	-	-				+	0.75	-	-+-			0.407	0.210	22	+	4	-	+	8	_	+	+
1200	-							+	+	-			+	0.75	-	-	-		0.711	0.368		2	22	-	-	8	-	+	+
7:00	191	1.379 1.005 0.008 228.0	500	0.009 2		-	15.0	0.58 55.0	0 2.17	7 14.28	28 1.24		+	0.75			-	_	0.910	0,469	37	+	48	-	-	8 1	+	+	+
_		1 1001		AUUU		+	-	-		_	_		+	¢/10		-			0.704	0.303		4	36 36	+	-	8	+	+	+
001 87	101	0.870	0.366 0	0.010	_	12 28.F	0 0.02	0.00 25.0	00/1 0/	11.42	42 1.72		1	0.75	0.75	0.75	0.75	0.084	0.528	0.271	43		2 01	2,281	81 10,350 69 20 200	00 00	-	+	+
1001	+-	0.977	0.760 0.000	000		+	+		+-	_			-	+	-	-	-	-	0.640	0.945	3	2	+	+		2 14	-	+	+
Total	-		30.80	-	-	-			2				-	-	-	-	20.0	10000	21000	200	3	2	1	2.4	-	3			
		-	1.27	2	RTW Sample			14.0 *C			Akalı	Alkalinity 288.0 mg/L	0 mg/L			Sulfate	Sulfate 73.6 mg/L	mgf											
		9	0.54	-				448.0 mg/L	-	Calclur	Calcium Hardness 65.7	55 65.3						8											
1			0.99				pH 8	8.01 SU			Chioin	Chloiride 42.1	-													+			
IT OF A	POINT OF APPLICATION	POINT OF APPLICATION	T										Type	Type of Chiorine	Type of Chiorine Used					Type of Fluoride Used	luoride	Used							
ERLO	METER LOCATION:													Chilor	Chlorine Gas						Hyde	Ruosis	Hydrofluosiscic Acid	23	3%F				
12.5	% Chio	% Chlorine Solution Fed	hed r	2 1	I certify that the information in this report is complete	the info	mation	in this reg	nort is col	mplete				Calch	Calcium Hypochlorite	thorne -		89			Sodi	Sodium Fluoride	ndo	%F					
40	% Bisul	% RisulfieSolution Fed	Fed	I Æ	and accurate to the best of my knowledge Reported by: Cert or F	le lo me	Dest of	Thy Rowman	Cert or Req:					Chlori	Sodium Hypochionite _12.5 Chlorine Test Kit Used:	Thomas It Used:	2.5 %	200			Type	of Test	Instrum	Uther Type of Test Instrument Used	1+				
	1000							I	10000	ļ			Т			the second se										_			

South Sangamon Water Commission March 2017 Monthly Operation Report

Attachment A

è.	
AGEN	
CTION	
ROTE	
NTAL F	
RONME	
ENVI	
ILLINOIS	

OFTENING REPC	ission
D ION EXCHANGE 5	ngamon Water Comn
RON REMOVAL AND	South Sar
MONTHLY I	NO

ity Test				Bank 3						PASS							PASS							PASS						PASS											
Membrane Integrity Test	Post Filter			Bank 2						PA35							PASS							PASS						PASS											
Aembrar	ď			Bank 1						PASS							2249							PASS			1	T	T	PASS											
-		PO4 3-	-	-	0.96	0.78	0.81	0.89	0.88	0.97 P	0.93	0.85	1.04	1.09	1.32	1.38	1.23 0	1.12	1.25	1.28	1.19	1.30	1,35	1.39 P	1.44	1.20	1.30	8	1.31	1.44 P	1.48	1,36	1.40	1,32	-		T	-	%E		ti
		12			-	1.5	1.5	5.5	1.6	11	1.5	1.1	1.4	15	1.4	1.5	1.1	1.5	1.5	4.4	1.5	12	1,5	1.4	-	+	-+-		1 2	15	1	14	-+	-					d 23	WF.	ment Us
		Dist. Cl res F = Free	T = Total	F mg/L T mg/L	1.3	1.4	1.3	1.3	1.4	0.9	13	1.0	1.3	13	1.2	1.3	6.0	13	1.3	12	1.3	1.0	1.3	1.2	+	-	+	+	1.0	1.3	0.9	1.1	+	0.9				peed	licic Aci	onde	st Instru
		u.	1/Gua		0.74	0.76	0.77	0.79	0.74	0.76	0.88	0.97	0.76	0.86	0.80	0.81	0.87	0.77	0.82	0.81	0.86	0.80	0.78	0.83	-	-	-	0.74	-	0.63	0.77	0.82	-	97.0			ATION	uoride U	Hydrofluoslicic Acid 23	Sodium Fluoride	Other Type of Test Instrument Used
	Finished	Min		-	0.037	0.014 (0.009	0.018 0	0.025	0.010	0.008	0.009	0.015 0	0.007	0.009	0.009	0.009	0.006	0.008	0.012	0.006	0.012	0.007 (0.007	_	-		_	0.009	0.010 0	0.013 0	0.011 0		0.015 0				Type of Fluoride Used	Í	S.	5 F
	2	Fe		_	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0.0	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0	_	-	-	0.01	-	0.01 0	0.01 0	0.01 0		0.01 0			0	-		-	-
		Yotal Hand.		-	140	118	112	152	110	130	112	124	118	110	130	112	134 1	120	112	170	120	110	120	110	-	+	-+	110	+-	120	124 0	112 0	-	130						2	2
			ugh.	-	270	280	268	262	284	282	280	206	272	278	260	264	278	286	270	274	282	276	280	290	-	-	+	270	-	268	292	-	-	280						tte	te_12.5 sed:
		H		-	7.93	7.87	7,86	7.88	7.72	7.84	8.01	7.78	7.85	7.86	7.94	7.93	7.80	7.94	7,89	7.84	7.81	7.89	7.92	7.90	-	-	-	1.92	-	1.86	7.85	1912	-	11.1					100	ypochior	set Kit U
N	X	Total	mg/L				16																23	-						-		-							Chlorine Gas	Calcium Hypochlorite	Sodum Hypochlorite _12.5 Chlorine Test Kit Used:
lest	Post IEX	Fe Te															-	-						-	+	1	+	+	1	-			1					Jaed		3	20 20
Chemical Test		Mem Turb.			0.14	0.12	0.11	0.16	0.16	0.15	0.14	9.13	0.13	0.13	0.14	0.14	0.13	0.16	0.17	0.11	0.16	0.10	0.13	0.11	0.09	0.15	0.12	0.14	0.14	0.10	0.11	0.13	0.16	0.14			IATION I	Type of Chiorine Used			
đ	Post Filler	Total	and the second second		0.105	0.016	0.032	11/0.0	0.080	0.018	0.020	0.017	0.016	0.021	0.015	0.024	0.022	0.029	0.018	0.018	0.013	07070	0.023	0.019				0.021		0.021	0.027	0.033		0.031			nov en	When of C	g		
	ď	Fe																										T	T										Γ		
		Ne Sol	~		0.086	0.018	0.040	0.072	0.088	0.021	0.022	0.019	0.020	0.019	0.015	0.022	0.020	0.017	0.021	0.022	0.289 0.017	0.313 0.026	0.354 0.025	0.355 0.020	0.352 0.026	0.353 0.030	0.367 0.025	0.361 0.026	0.357 0.022	0.263 0.022	0.399 0.045	0.019	0.377 0.027	0.380 0.035							
10000	Pre Filter	Mn Tot	-		0.448	0.352	0.310	0.276	0.301	0.348	0.324	0.360	0.338	0.343	0.326	0.367	0.325	0.319	0.321	0.369	0.280	0.313	0.354	0.355	0.352	0.353	0.367	0.361	0.357	0.263	0.399	0.373	0.377	0.380							
		19 g	-		_								_						_						_												-				
		Total	-		-	0.181	-	0.175	-	0.190	_		0.200	-	_	-	0.182	_	0.189	0.169	_		_	-	_	_	0.202	_	-	0.195			0.211							nplete	
		Fe Fe	-	-			1.15	1.17		0.88			1,35					1.08	0.87	0.88	-				-	+	+	0.67		0.98	-	-	-	2			-	_		I certify that the information in this report is complete	Medge Cert or Req.
	Raw	Total Hand.	mgh	-	-			390		370			374						370			-		-	-	+	32	-		374			88	-						this repo	trest of my knowledge Cert or
		Total		-	-		-	284	-	292			-											-	-		200		-			-	290	-			-	_		ni uote	et of my
		Temp		-	-	13.4	13.4	13.8	6	13.7	Ξ.	-	14.0	-	-	-	132	Ξ.	13.4	2	-	-	-	-		-		13.8	-	13.7	1.1	-	13.7	-						to inform	
	_	H	1	-	-		-	7.44	-	3 7.40		-	8 7.52	-		-	_	-	9 7.42	-	-		-	_	_	_	SC 7.28		_	7.34	_	_	7.37	-			_			ly that th	and accurate to the Reported by:
	_	Water Plant Treated Water	(leg M) (leg M)	_	0.008	0.013	0.005	0.009	0.008	0.013	0.013	0.009	0.018	0.000	0.013	0.009	0.008	0.009	0.009	0.004	0.017	0.007	0.011	0.008				0.013	_	0.009	0.009	0.012		0000	2 6	*		_		1 corti	Repor
Pumping Totals				-	1.229	1.236	0.894	0.828	0.918	1.196	1.177	1.147	0.861	0.994	1.163	0.999	0.947	0.959	0.951	0.974	1.008	1.004	1.033	1.024	1.015	1.031	5460	8/610	-	1.005	1270	0.986	0.781	0.760	12.1	0.54	6670				
Pumpie	0F	Galloris Filtered			1.347	0.942	0.915	0.983	1.303	1.268	1.188	0.937	1.073	1.282	1.076	1.058	1.078	1.035	1.070	1.100	1.102	1.152	1.111	1.113	1.123	1.068	1.080	1.009	1.077	1.379	1.067	0.797	0.829	0.927			4			on Fed	on Fed
		Total	(Je6 M)		1,504	1.487	1.082	1.019	1.093	1.463	1,300	1.431	1,063	1.197	1.409	1.192	1,184	1.195	1,163	1.195	1.219	1.233	1.287	1.224	1,260	82	R/L'L	1 128	0.682	1.200	1.536	1.208	0.899	0.800			Are. *Extent Condinant and Month	NO		% Chlorine Solution Fed	% Fluoride Solution Fed % Bisulfite Solution Fed
		Hours	Ran		19.4	13.9	13.2	14.1	18.9	18.2	19.5	13.8	15.7	18.1	15.7	15.1	16.4	15.2	15.5	15.7	15.8	16.8	15.8	16.2			_	15.2		19.1	14.9	11.7	12.1	13.4 0.900			t and the t	POINT OF APPLICATION	NDUN:	% Chlori	% Fluon
		Time	Read		7.00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7;00	7:00	7:00	7.00	7:00	7.00	7:00	2:00	7:00	2:00	7:00	2:00			Cloud D	I OF AP	METER LOCATION:	40	R 🗣
	L	Date	2		-	2	ø	*	5	9	1	-	6	10	ŧ,	12	13	14	15	16	17	18	19	8	2	8	R	8 8	Q 18	22	12	52	8	E	Max	Win	Ane.	POIN	METE	-	N 00

Attachment A

SOUTH SANGAMON WATER COMMISSION

(Public Water Supply ID# IL1670080)

The South Sangamon Water Commission is committed to ensuring the quality of your water and want you to be informed about the water and drinking water. The source of drinking water used by South Sangamon Water Commission is Ground Water. For more information regarding services delivered to you in 2016. This Annual Water Quality Report is for the period of January 1 to December 31, 2016. This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe this report, please contact Mr. Daniel L. Held, Project Manager for Woodard and Curran at (217) 381-2206.

Este informe continene información muy importante sobre el aqua que usted bebe. Tradúzcalo ó con alguien quo lo entieda bien.

What are the contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrials or domestic wastewater discharges, oil and gas production, mining, or faming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and
 - Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided health Some people may be more vulnerable to contaminants in drinking water then the general population. Immuno-compromised persons such as system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune

Attachment B

from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800) 426-4791.

Additional Information regarding Lead

exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize f present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead

Source Water Assessment

We want our valued customers to be informed about their water guality. If you would like to learn more, please feel welcome to attend any of nduding; Importance of Source Water; Susceptibility to Contamination Determination; and documentation/recommendation of Source Water been completed by the Illinois EPA. If you would like a copy of this information, please contact Daniel L. Held, Project Manager for Woodard and Curran, at (217) 381-2206 or dheld@woodardcurran.com. To view a summary version of the completed Source Water Assessments, our regularly scheduled meetings on the third Tuesday of the month at the water plant. The source water assessment for our supply has Protection Efforts, you may access the Illinois EPA website at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl. source of Water: SOUTH SANGAMON WATER COMMISSION Based on the information located in the Wellhead Protection Planning Map no potential sources are located within the source water protection area of the wells. Information provided by the Leaking Underground Storage Tank and Sit Remediation Program Sections of Illinois EPA did not indicate any additional sites with on-going remediation(s)

floodplain, well depth, and the available hydrogeological data. In accordance with the U.S. EPA's Groundwater Rule, SSWC has received two and (2) Non-Compliance Advisory letters (NCA) in 2013 for bacteriological detections in wells #5 and #6. The facility addressed the NCA's in a active potable wells at SSWC. It should be noted, while the community's wells are properly constructed with sound integrity, the location of reviewing the sampling protocol. While the NCA(s) have now been resolved, monitoring data is continually being tracked in regards to all the wells is within a floodplain and well depth leaves the potential for bacteriological contamination. However, to date, all potential routes disease outbreak and the sanitary survey of the water supple did not indicate a bacteriological contamination threat within 1,000 ft of the sanitary defects have been mitigated such that the source water is adequately protected, monitoring data has not indicated a history of The Illinois EPA has determined that the SSWC's Community Water Supply's source water has a high susceptibility to IOC, SOC, and variety of ways such as chlorinating the well, secured well fittings, a new sample tap(s), use of outside environmental consultants and bacteriological contamination. This determination is based on a number of criteria including: land use near the wells, location within a source water

Page 2 of 6

2016 REGULATED CONTAMINANTS DETECTED

Lead and Copper

Definitions:

The level of a contaminant in drinking water below which there is no known or expected risk to health. ALG's allow Action Level Goal (ALG): for a margin of safety.

Action Level: The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, which a water system must follow.

Lead and	Date		Action	90tp	# Sites			
Copper	Sampled	MCLG	Level (AL)	Percentile	over AL	Units	Violation	Likely Source of Contaminant
Copper	2016	1.3	1.3	0.851	0	uudd	z	Erosion of natural deposits; Leaching from wood
								preservatives; corrosion of household plumbing
								systems.
Lead	2016	0	15	4.5	0	qdd	z	Corrosion of household pumping systems; Erosion of
								natural deposits

Water Quality Test Results

The level of a cont of health. MCLGs The highest level o to the MCLGs as fo to the MCLGs as fo the level of drinkin health. MRDLGs of contaminants. The highest level o addition of a disinfe	heal heal brantan brantan dition	The level of a contaminant in drinking water below which there in no known or expected risk of health. MCLGs allow for a margin of error.	The highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLGs as feasible using the best available treatment technology.	The level of drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do reflect the benefits of the use of disinfectants to control microbial contaminants.	Maximum residual disinfectant level or MRDL: The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.	Attac
--	--	---	--	--	--	-------

WOODARD &CURRAN

	The following tables contain scientific terms and measures, some of which may require explanation.	micrograms per liter or parts per billion – or one once in 7,350,000 gallons of water.	not applicable.	Regulatory compliance with some MCLs are based on running annual average of monthly samples.	milligrams per liter or parts per million – or one once in 7,350 gallons of water.	pCi/L; picocuries per liter (a measure of radioactivity)	Not detected.	Disinfection and Disinfection By-Products	Collection Level Levels
WOODARD	Definitions:	:qdd	na:	Avg:	mqq	pCi/L	QN	Disinfecti	

	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Units Violation	Likely Source of Contamination
Chlorine	12/31/16	-	0.7 - 1.4	MRDLG = 4	4	bpm	z	Water additive used to control microbes
Halocetic Acids (HAA5)	06/17/2015	21.8	21.8 – 21.8	No goal for this total	60	odd	z	By-products of drinking water disinfection.
Total Trihalomethanes (TTHM)	06/17/2015	19.64	19.64 - 19.64	No goal for this total	80	qdd	z	By-products of drinking water disinfection.

Page 4 of 6

Attachment B

South Sangamon Water Commission March 2017 Monthly Operation Report

Attachment B

Inorganic Contaminants

Likely Source of Contamination	Discharge of drilling wastes; discharge from metal refineries; erosion from natural deposits	Erosion of natural deposits; water additives which promote strong teeth; discharge from fertilizer and aluminum factories.	This contaminant is not currently regulated by USEPA. However, the state regulates. Erosion of natural deposits.	This contaminant is not currently regulated by USEPA. However, the state regulates. Erosion of natural deposits.	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	Erosion from naturally occurring deposits: used in water softening regeneration.
Units Violation	z	z	z	z	z	z
Units	mdd	mqq	mqq	qdd	mqq	mqq
MCL	2	4.0	1.0	150	10	None
MCLG	2	4	None	150	10	None
Range of Levels Detected	0.019 - 0.019	0.886 – 0.886	QN	28.7 - 28.7	0.302 – 0.302	122 – 122
Highest Level Detected	0.019	0.886	QN	28.7	0.302	122
Collection Date	070/9/2015	07/09/2015	2016	2016	2016	7/9/2015
	Barium	Fluoride	Iron	Manganese	Nitrate (measured as nitrogen)	Sodium

Radioactive Contaminants

	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Combined	07/23/2015	1.53	1.53 - 1.53	0	5	pCI/L	z	Erosion of natural deposits
Radium 226/228								
Gross alpha	07/23/2015	1.12	1.12 - 1.12	0	15	pCI/L	z	Erosion of natural deposits
excluding radon								
and uranium								

Any and all contaminants not found in this report are not detected in the finished drinking water. Raw Water was monitored and results are available.

Violation Table

Nitrate (measured as Nitrogen) – infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome

ation Type	Violation Begin	Violation End	iolation Type Violation Begin Violation End Violation Explanation	Corrective Action
Routine	01/01/2016	12/31/2016	We failed to test our drinking water for the	Woodard and Curran pulled the sample
Monitoring			contaminant and period indicated.	on September 21, 2016 and it was
			Because of this failure, we cannot be sure	taken to the laboratory the same day
			of the quality of our drinking water during	for analysis. The laboratory analyzed
			the period indicated.	the sample on September 22, 2017 but
				failed to report the findings to the Illinois
				Environmental Protection Agency.
				Despite the fact the violation was not
				the fault of SSWC or Woodard and
				Curran, the violation is still required to
				be included in this report

Attachment B

Page 6 of 6