

SSWC

Monthly Operating Report

June:2022

So. Sangamon
Water Commission
July 18th, 2022

TABLE OF CONTENTS

SEC	TION		PAGE NO.
Exe	cutive	Summary	ES-1
1.	SAFE	тү	1-1
	1.1 1.2 1.3 1.4	Safety Training Lost time Accidents Safety Audit Miscellaneous Safety	1-1 1-1
2.	COMP	PLIANCE, FLOWS AND LOADINGS	2-2
	2.1 2.2 2.3 2.4	Compliance	2-2 2-2
3.	OPER	ATIONS	3-1
	3.1 3.2 3.3 3.4	Events impacting operations Emergency & Service calls Emergency Call-outs Customer Inquiries	3-1 3-1
4.	MAINT	FENANCE AND REPAIR	4-5
	4.1 4.2	Preventative and predictive maintenance Corrective repairs	
5.	PROJ	ECT MANAGEMENT & SUPPORT	5-1
	5.1 5.2 5.3	Staffing & Training Corporate Support Budget	5.2
6.	CAPIT	AL PLANNING	6-1
	6.1 6.2	Approved CIP Projects Current status	

LIST OF TABLES

TABLE	PAGE NO.
Table 2.2 Influent Concentrations and Flow	2-2
Table 2.3 Finished Water Quality	2-2
Table 2.4 Weekly Grab Sample Analysis Results	2-4
Table 4.1 Budget Table	5-3

EXECUTIVE SUMMARY

Safety. Safety is the number one priority at South Sangamon. We have instituted a monthly safety meeting for operations staff at the plant. There were no lost time accidents in the month of June 2022.

Compliance. The finished water quality was within regulatory limits and all reporting and sampling requirements were met for the month. A copy of the Operations Report submitted to the Illinois Environmental Protection Agency is available at **www.sswc.us**.

During the month of June 2022, the plant pumped 48.997 million gallons from the well field and 43.156 million gallons of finished water. This is .2.3 million gallons less than June of 2021.

The SSWC plant has been removed from Critical Review status.

Operations. There was 0 emergency call-outs for the month. There were numerous customer inquiry for the month.

Maintenance and Repair. For the month of June 2022, there were 30 inspections, 3 preventative and 3 corrective maintenance activity completed. There was 1 repair activities performed.

Budget. Passed at April 18th 2022 meeting.

Capital Planning.

Chatham emergency interconnect

Onsite fuel storage tanks

Detention Tank

1. SAFETY

1.1 SAFETY TRAINING

At South Sangamon we strive to provide a safe working environment for all employees. This is accomplished with daily safety meetings and open communication.

1.2 LOST TIME ACCIDENTS

There were 0 lost time accidents in the month of June 2022.

1.3 SAFETY AUDIT

No safety audits to date.

1.4 MISCELLANEOUS SAFETY

No notable safety issues

2. COMPLIANCE, FLOWS AND LOADINGS

2.1 COMPLIANCE

The finished water quality was within regulatory limits and all Bacteriological testing was completed for the month of June. A copy of the Operations Report to the Illinois Environmental Protection Agency (IEPA) is available on the SSWC website.

2.2 INFLUENT FLOWS AND LOADINGS

The total gallons pumped from the well field were 48.997 MG. The influent parameters were all within the normal range.

The influent flow and loadings are summarized below in Table 2.2

		Tab	le 2.2 Infl	uent Conce	entrations a	ind Flow		
	рН	Temp	Iron	Manganese	Fluoride	Hardness	Alkalinity	Well Flow Gals (MGD).
Max.	7.3	16.2	2.67	.287	-	390	360	1.854
Min.	7.0	13.4	.40	.179	-	340	280	1.252
Avg.	7.2	13.4	.91	.220	-	362	299	1.633
Total	-	-	-	-	-	-	-	48.997

2.3 EFFLUENT CONCENTRATIONS

The facility filtered 43.156~MG during the month with a daily average of 1.439~MG and a $min/max\ 1.102/\ 1.644~MG$.

				Table	2.3 Fir	nished Wat	er Qualit	у		
	Free CL2	Total CL2	рН	Temp	Iron	Manganese	Fluoride	Hardness	Alkalinity	Phosphate
Max.	.86	3.14	7.7		0.23	0.150	1.29	320	312	2.05
Min.	0.02	1.13	7.2		0.01	0.023	0.55	80	270	.85
Avg.	0.16	2.64	7.6		0.02	0.06	0.83	136	290	1.89
MCL	_	-	-	-	1.00	-	4.00	-	-	-
SMCL	-	-	-	-	0.30	0.050	2.00	-	-	-

Finished Water Flow Comparison for FY 2021 -22

Time Period	21-22	20-21	19-20
July-2021 - June-2022	422,012,750	423,546,630	347,187,763
Increase for the same per	iod last year	-1.5 MG	76 MG

		FINISHED WA	TER PUMPING	G HISTORY		
	21-22	20-21	19-20	18-19	17-18	16-17
July	39,001,640	44,237,066	23,742,374	41,178,722	42,164,927	35,378,396
Aug	39,953,900	39,638,063	25,018,633	35,176,238	38,760,634	35,401,490
Sept	38,935,839	38,674,095	34,234,782	34,754,000	39,896,986	36,325,215
Oct	34,918,955	34,597,739	30,769,238	30,353,482	33,506,605	4,374,8320
Nov	31,181,005	32,325,040	30,877,400	30,464,000	28,617,333	30,478,309
Dec	31,391,459	31,582,311	29,703,954	31,930,000	28,808,037	32,525,530
Jan	32,322,270	31,456,987	30,073,516	28,823,375	30,556,824	30,449,215
Feb	32,451,653	30,638,842	28,797,693	28,625,431	25,617,914	27,373,232
Mar	33,909,417	33,633,244	30,339,298	31,237,000	28,217,699	30,068,363
Apr	31,991,050	33,214,211	31,542,650	28,418,249	27,110,578	29,625,797
May	37,459,417	35,932,776	34,673,848	33,045,927	33,304,196	32,120,873
June	38,496,145	37,616,256	17,414,377	33,460,303	34,040,000	39,931,402
Totals	422,012,750	423,546,630	347,187,763	387,466,727	390,601,733	403,426,142
Avg	1.15 MGD	1.16 MGD	.951 MGD	1.06 MGD	1.07 MGD	1.11 MGD

2.4 LAGOON DISCHARGE CONCENTRATIONS

The results for the NPDES lagoon discharge permit are summarized below.

Table 2.4 Weekly Grab Sample Analysis Results

		Lagoon Eff	luent Results	;		
Date	Fe (mg/l)	Mn (mg/l)	Chloride (mg/l)	Cl ² (mg/l)	pH (S.U.)	TSS (mg/l)
June 1st 2022	.19	.054	610	.05	7.8	4
Minimum	.19	.054	610	.05	7.8	4
Maximum	.19	.054	610	.05	7.8	4
Average	.19	.054	610	.05	7.8	4
Monthly Avg Limit	2.000	1.000				15
Daily Limit	4.000	2.000	500	0.05	6.0-9.0	30

The Chloride sample for the month, performed by the Springfield Metropolitan Sanitary District, was below 30,000 mg/l for the month of June 2022. The limit for chloride discharge to the sanitary district is 30,000 mg/L.

3. OPERATIONS

3.1 EVENTS IMPACTING OPERATIONS

There was 0 incident that impacted the operation of the plant.

3.2 EMERGENCY & SERVICE CALLS

Service Calls:

• There was 0 emergency call out for the month.

3.3 EMERGENCY CALL-OUTS

There was 0 emergency call out for the month.

3.4 CUSTOMER INQUIRIE

There were numerous customer inquiries.

OTHER WORK PERFORMED

Trouble shooting all trains
Trouble shooting of CIP skid and CIP procedure
Inspected distribution mains
Inspected booster station
Flushed air system
Trouble shooting of Ion exchange system
Repaired ion exchange valve and actuator
Repair of air compressors
Customer service
Discussed taps with customer and EJ water

Sangamon County Sheriffs office called Laura about a damaged hydrant on old rt 54 just east of New Berlin. Upon inspection it was found that the hydrant had been struck by a piece of farm equipment when the land owner was plowing their fields.

This piece of farm equipment was found laying next to the hydrant that was damaged. It appears to have been broken off it the time of impact.

Replaced Permanganate scale and redout.

4. MAINTENANCE AND REPAIR

4.1 PREVENTATIVE AND PREDICTIVE MAINTENANCE

For the month of June 2022, there were 30 inspections, 3 preventative and 3 corrective maintenance activity completed.

4.2 CORRECTIVE REPAIR

Pulling and cleaning pre filters on all 3 filter trains on weekly basis

CIP train 1,2 and 3

Purged air control system

Air Compressor service

Repair of train #3

Replaced Sodium Permanganate scale and read out

5. PROJECT MANAGEMENT & SUPPORT

5.1 STAFFING & TRAINING

- Staff member training has been continuous and ongoing.
- Operator and Asst. Operator have been studying for EPA licensing test.

5.2 OPERATIONAL SUPPORT

The following individuals, either on-site or remotely, provided assistance in operation and/or maintenance of the plant during the month of June 2022.

- Kevin Canham
- Stephen Bivin
- Katie Krall
- Dan (SCADAware)
- Joe Lee
- Kevin Garmin (SCADAware)

5.3 BUDGET

Table 5.3 Operating Budget

Table 5.3 Budget Table

Budget Table was removed: see clerks report

6. CAPITAL PLANNING

6.1 APPROVED CIP PROJECTS CURRENT STATUS

Pigging project construction complete. Awaiting first pigging before completely releasing contractor.

Benton and Assoc has initiated the planning phase of the Chatham Emergency interconnect. Construction permit has been approved and received. Construction has been postponed.

Train #2 upgrade repair has been completed and train #2 is back online.

6.2 DRAFT CAPITAL IMPROVEMENT PLAN

The CIP is a planning document that includes all projects anticipated to exceed \$5,000 in cost over the next five years. The CIP is an ongoing process and will be refined from time to time as projects are completed and new issues are identified.

- 1. Second Torray filter train has been installed
- 2. Onsite fuel storage tanks have been ordered.
- 3. BOP CPU upgrade has been completed
- 4. Meter Project progressing, meters scheduled to arrive mid August, tentatively.
- 5. Second raw water detention tank

	ç	270		Regeneration	Washed	Water	gal.	43400	21700	32550	10850	32550	21700	32550	32550	32550	21700	21700	43400	32550	32550	00020	32550	21700	32550	32550	32550	43400	43400	43400	0	43400	43400		911400	30380	43,400	0						
	0000	Page 1 of 2		Regen	Salt	Used	lbs.	0124	4562	6843	2281			6843	6843	6843	4562	4562		6843	6843	0434	6843		6843	6843	- 1	9124	9124	9124	0	- 1	9124		191604	6386.8	9,124	0						
				berof	eration.	ndicate	wing.	4 270	30.0			73.0	29.0	010	31.0	32.0		34.0	26.0	29.0	21.0	0.62	0.12	30.0	28.0	26.0	26.0	29.0	24.0	32.0		32.0	U.I.S		869	30.3	73.0	21.0			6666			
			ers	total num	negen st	nid-day, ir	ollo suno	340	Ĉ.	39.0			81.0	29.0	31.0	39.0		37.0	27.0		33.0	0.02	33.0		31.0		i	27.0	25.0	33.0		32.0	30:0		692	36.4	81.0	25.0			253419999			
			Softeners	Each dayindicate total number of	hours since previous regeneration.	f regeneration at mid-day, indicate	hours previous/hours following.	36.0	200	38.0		62.0		33.0	35.0	42.0	36.0		34.0	35.0	000	24.0	32.0	29.0		27.0	32.0	30:0	32.0	39.0		29.0	0300		694	34.7	62.0	27.0			cation IC			П
				Each da	hours sin	Fregene	hours	1	36.0	16.0	22.0	36.0		37.0	28.0		38.0		42.0	30.0	33.0	0.40	37.0		35.0	24.0	23.0	32.0	32.0	39.0		33.0	0.82		705	32.0	45.0	16.0			ator Certifi			П
			ŀ	Water	Bypassed	-Ba	(Mgal)	0.505	0.502	0.420	0.456	0.515	0.515	0.512	0.442	0.413	0.431	0.434	0.460	0.569	0.486	0120	0.462	0.462	0.511	0.557	0.529	0.564	0.567	0.563	0.382	0.533	0.504	0.000	14.949	0.482	0.569	0.000			Illinois Operator Certification IC			
			ŀ	Water	Softened By	Gal.	(M gal)	0.054	0.946	0.792	098'0	0.972	0.972	2967	0.833	0.778	0.812	0.820	0.867	1.075	0.918	0.90	0.307	0.872	0.963	1.050	0.999	1.063	1.070	1.062	0.720	1.007	0.050		28.207	0.940	1.075	0.720	-	omplete			22	
		f		Wash	Water	SBI-	(Mgal)	0.005	0.064	0.063	0.062	0.073	0.073	0.079	0.061	990'0	0.052	0.058	0.065	0.073	0.065	0000	0.056	0.056	0.070	0.078	0.067	0.072	0.075	0.085	0.048	0.079	0.00		1.995	0.067	0.085	0.025		report is o owledge.			6/23/2022	
			ŀ		>		•																												H	#DIV/0i	0	0		I certify that the information in this report is complete and accurate to the best of myknowledge.		7/12/2022		
			UF Filters	reviou sh				3	0.00	99.0	99'0	99.0	99.0	99.0	0.66	99.0	99.0	99'0	99.0	99.0	99.0	00.0	0.00	99.0	99.0	99'0	99:0	99.0	99'0	0.66	99:0	99.0	0.00	99'0	1	99.0	0.66	99:0		ne informa			als Ser	П
			5	Hours since previous backwash			Bank #	2	99.0	99.0	99.0	99.0	99.0	99.0	99.0	99.0	99.0	99.0	99.0	99.0	99.0	00.0	99'0	99.0	99.0	99.0	99.0	99.0	99.0	99.0	99.0	99.0	0.00	99.0	1	99.0	0.66	99'0	- 100	ertify that the	Reported by:	Date:	Date Bacterials Ser	П
				Hours			<u>ه</u>	1 0	99.0	99.0	99.0	99:0	99:0	99:0	99:0	99.0	99.0	99.0	99.0	99.0	99.0	00:0	99'0	99.0	99:0	99.0	99.0	99:0	99.0	99.0	99.0	99:0	0.00	99:0		99:0	0.66	99.0	1	<u> </u>	2	Ď	<u>°</u>	Н
0800		+		Pond		Calc	l/gm	14 12	10.43	90.8	10.77	6.59	9.29	16.95	10.82	8.95	10.90	10.65	6.84	10.43	6.65	40.89	10.22	11.70	6.82	6.23	13.56	10.41	9.68	9.21	9.99	7.82	13.08	#DIV\0i	#DIV/0i	#DIV/0i	#DIV/0!	#DIV/0i			3% F		9	П
IL 167				Sodium Bisulfite Pond	Amit	nsed	lbs.	5	16	13	15	12	19	8	17	15	14	15	12	19	± 5	71 00	15	16	12	12	23	8 6	19	20	10	9 1	<u> </u>		479	16.0	33	10			icic Acid 1	H	NS metro	П
sion -						Calc	l/gm	as PO4	0.28	0.36	0.43	0.44	0.36	0.50	0.83	1.33	2.25	2.23	2.64	0.19	0.29	0.37	0.44	0.47	0.52	0.62	1.04	0.41	0.39	0.26	0.62	0.55	0.04	#DIV/0i	#DIV/0i	#DIV/0i	#DIV\0i	#DIV/0i			Hydrofluosilicic Acid 19% F		200, SPAL	П
simmi	2022			Phosphate	Amit	Nsed	lbs.	6	2 0	1	14	14	13	æ ç	24	41	99	7.1	82	7	10 5	2 4	17	15	18	24	37	12 16	15	10	17	2 20	7 60		691	23.0	82	7					d: Hach 2	
fer C	June 2022		ŀ			Calc	l/gm	as F	0.67	0.73	0.85	0.80	0.64	0.71	0.08	0.65	0.79	0.74	0.89	0.69	0.72	0.70	0.77	0.70	0.73	0.72	99.0	0.70	77.0	0.48	1.05	0.79	0.00	#DIV/0!	#DIV/0i	#DIV/0i	#DIV/0i	#DIV/0i		8	oride Use	:	alyzer Use	
South Sangamon Water Commission - IL 1670080	_			Fluorosilicic Acid	Amit	Nsed	lbs.	Ą	33. 12	æ	48	4	04 :	4 :	8 ৪	88	9	41	20	45	£ ¢	¥ 5	22	88	4	49	42	8 8	51	32	20	S :	Q 49		1314	43.8	52	32		FLUORIDATION	Type of Fluoride Used		Fluoride Analyzer Used: Hach 2200, SPADNS method	П
angan			Applied	nium ate		Calc	l/gm	as NH3	1.37	1.74	1.99	1.55	1.55	1.77	1.45	151	1.50	1.80	2.02	1.49	1.71	1.01	2.21	1.62	1.79	1.63	1.66	1.71	1.38	1.30	2.50	1.93	193	#DIV/0i	#DIV/0i	#DIV/0i	#DIV/0!	#DIV/0i						
of the Si			Chemicals Applied	Ammonium Sulfate	Am't	Nsed	lbs.	8	88	88	109	96	96	109	2 8	75	78	94	112	102	100	130	123	90	110	109	100	116	94	88	115	124	11 10		3039	101	124	75			12.5 %			
တိ			క	ium Ilorite		Calc	l/gm	as CI	2.92	3.76	4.26	3.55	3.08	3.51	325	3.32	3.61	3.73	4.38	2.88	3.69	3.42	4.43	3.51	3.54	3.56	3.39	3.39	2.71	1.53	5.55	3.82	3.73	#DIV/0i	#DIV/0i	#DIV/0i	#DIV/0!	#DIV/0i			Sodium Hypochlorite 12.5 %		Analyzers Used: Hach CL17 (2) & 5500sc	
				Sodium Hypochlorite	Am't	Used	lbs.	333		304		352			278						346						346					392			9989	333	408	166			Sodium H		h CL17 (z	
				Sodium Bisulfite BW		Calc	mg/l	000	00:0	00'0	00'0	0.00	0.00	0.00	00:0	00'0	00'0	00'0	0.00	0.00	0.00	000	00'0	00'0	00:0	00'0	0.00	00:0	00'0	00'0	0.00	00:0	000	#DIV/0i	#DIV/0i	#DIV/0i	#DIV/0!	#DIV/0i					Used: Hac	
				Soc Bisulfi	Amî	Used	lbs.																												0	#DIV/0i	0	0	i	NATION	Chlorine Used		vnalyzers	
				um yanate		Calc	mg/l as	NaMnO4						0.49	0.51	0.51	0.51	0.51									0.55	0.20	0.19	0.13	0.27			#		#DIV/0i	#DIV/0!	#DIV/0i		CHLORIN	Type of C		Chlorine	
				Sodium Permanganate	Amit	Nsed	lbs.	37	32	29	30	31	32	33	29	31	30	31	32	38	34	30	39	32	36	39	41	15	15	10	14	15	4 6	!	879.0882	29.3	42.0	10.0						
		Ī		Lagoon	Effluent	umpage	(Mgal)	0000	0.074	0.077	0.067	0.087	0.083	0.093	0.075	0.080	0.062	0.068	0.084	0.087	0.079	0.000	0.070	990'0	0.084	0.092	0.081	0.088	0.094	0.104	0.048	0.098	0.092		2.397		0.104	0.044		Pre-aerator Membrane Backwash	Jec	Jer.	well	lnent
					오	PumpagePumpage	(Mgal)	1415	1261	1209	1281	1249	1.432	1.419	1.146	1.219	1.160	1257	1274	1.481	1.367	1.377	1,533	1272	1.371	1.543	1.401	1.530	1.517	1.507	1.088	1.445	1398		40.922	1.364	1.543	1.088		Pre-aerator Membrane	Post Softener	Post Softener	Post Clearwell Post Clearwell	Lagoon Effluent
			Totals		Plant	Water	(Mgal)	0043	0.013	0.016	0.021	0.012	0.023	0.012	0.013	0.018	0.013	0.012	0.009	0.020	0.020	0.012	0.015	0.017	0.005	0.017	0.010	0.020	0.008	0.020	0.020	0.003	0.010		0.434	0.014	0.023	0.003						
			Pumping Totals		H	Filtered	(Mgal)	1.450	1.448	1212	1.316	1.487	1.487	1.479	1.430	1.191	1243	1254	1.327	1.644	1.404	1.471	1334	1.334	1.474	1.607	1.528	1.626	1.637	1.625	1.102	1.540	1454		43.156	1.439	1.644	1.102	-	anate	rite Solutio	e Solution	Solution	
			_	Raw	Well	Prod.	(Mgal)	1664	1.569	1.435	1.491	1.493	1.697	1.624	1.373	1.443	1.405	1.435	1.519	1.789	1.590	1.000	1,854	1.487	1.677	1.837	1.800	1.827	1.849	1.854	1.252	1.741	1,656		48.997	1.633	1.854	1252		Permang: Solution	Hypochlor	um Sulfat	licic Acid 3 ate Solutio	Solution
			ľ		Hours	Filter	Ran	000	18.5	16.6	17.5	17.2	19.7	19.6	16.5	17.1	16.9	17.2	18.3	20.5	18.4	19.5	21,4	17.5	19.9	21.4	19.6	21.3	21.2	21.4	14.2	19.9	189		572.2	19.1	21.5	14.2		20 % Sodium Permanganate 40 % BisulfiteSolution	% Sodium Hypochlorite Solution	% Ammonium Sulfate Solution	% Fluorosilicic Acid Solution % Phosphate Solution	% BisulfiteSolution
		ļ	1		Time	e Meter	Read	7.00	_	7:00	7:00		_		00:7		7:00	7:00			7:00			1				00:2	7:00	1			7:00		Total	Ave.	Max	Min	-	+	12.5	20	33	40
						Date		-	- 2	က	4	2	9 1	7	0	10	Ξ	12	13	4	15	0 1	18	19	20	21	22	24	25	26	27	78	87	3 5						1	က	4	9	7

		of 2	egrity	١,			Bank 3	psi																pass												bass		#DIV\0						
The continue of the continu		Page 2.	ane Int	st Filte				psi								pass																		ssed				#DIVIO!	000	000				
			Membr	Po			Bank 1	psi								pass									pass									pass						0.00				
Part						ntion	_	mg/L																					Ì									#DIW0	0.00	0.00				
This column					ne	Distrbu	ш	l/gm																														DIVIO	0.0	0.00				
Property Property					Chlori	⊥	ng/L		2.58	2.54	2.90	2.98	2.90	2.50	2.76	2.68	2.50	221	2.93	2.34	2.60	2.70	3.02	2.54	2.42	2.46	2.50	2.96	3.14	3.00	2.80	1.13	1.58	2.98	2.96	2.38	3.14			1.13				
Part						ш		-	0.20	0.15	0.52	0.12	0.10	0.15	0.10	0.10	0.32	0.13	0.15	0.17	0.13	0.18	0.18	0.10	0.11	0.10	0.10	0.13	0.09	60.0	0.11	98:0	90:0	0.09	0.02	0.12	0.10	0.16	98.0	0.02	emarks:			
Fig. 19 Fig. 18 Fig.					-ouq	oramine	l/gm	-	4.84	5.02	2.60	5.52	5.31	4.60	5.14	5.17	6.53	7.55	6.33	6.41	5.52	5.38	2.33	5.08	6.07	5.53	5.49	5.91	6.40	6.24	5.81	2:30	521	90.9	5.87	5.13	5.97	5.69	8.71	2.33			RS	
Physical and Charmes Physical and Charmes								:	0.48	0.20	0.61	99.0	69:0	9.0	0.58	0.50	0.08	0.11	0.41	0.70	0.40	0.48	0.59	0.41	0.58	0.58	0.61	0.62	69:0	0.59	0.63	0.61	0.47	0.53	0.45	0.56	60:0	0.51	0.70	80:0	_		30	
Property Property				-					.87	1.97	.85	.83	9/:1	86:	00:	76'	505	5.04	505	1.97	1.89	5.01	505	35	505	68.	1.87	86:	1.82	68.	92 20	382	36	.85	9/.	1.79	1.87	.89	502	382	-	_		
Part				Finishe			_																																		ity Calciu	Las CaCO	260	
							-																																					
Part					-		-																																		Ľ		7.	
No. No.																																									ľ	ပ္		
					Total	Hard.	mg/L																																		동		1.	
Progression of Chicago Progression of Chic						Ak.	mg/L																																		ity Tests		/2022	
Property Property	2022		ıl Tests		Turbidity		Ē																																		tion Stabil	wo Weeks	2/9	
Total Tota	June		Chemica			玉	_	-	7.6(7.5(7.6(7.6	7.6(7.6	7.5(7.6(7.5(7.40	19.7	7.6(7.7	7.6(7.7	7.7	7.6	7.6	7.6	7.7	7.7	7.6	7.2	197	7.6	7.7	7.6	7.5(7.7				Distribu	Every T	Date	ž
Total Tota			l and (×	3 4	ao		+																								+						###	0	0	H	H		
Total Tota			hysica	Post IE	-	Chloride		-	1																					+								##	0	0	┢	Н	H	
Pro UF Membrane Programme Proposition Programme Programm			<u>-</u>		-																																	##	0					
Fant Pre UF Membrane																																												

