SSWC Monthly Operating Report January:2025 So. Sangamon Water Commission February 18th, 2025 # **TABLE OF CONTENTS** | SEC | CTION | | PAGE NO. | |-----|--------------------------|---|------------| | Exe | cutive | Summary | ES-1 | | 1. | SAFE | TY | 1-1 | | | 1.1
1.2
1.3
1.4 | Safety Training Lost time Accidents Safety Audit Miscellaneous Safety | 1-1
1-1 | | 2. | COMP | PLIANCE, FLOWS AND LOADINGS | 2-2 | | | 2.1
2.2
2.3
2.4 | Compliance | 2-2
2-2 | | 3. | OPER | ATIONS | 3-1 | | | 3.1
3.2
3.3
3.4 | Events impacting operations Emergency & Service calls Emergency Call-outs Customer Inquiries | 3-1
3-1 | | 4. | MAIN | TENANCE AND REPAIR | 4-9 | | | 4.1
4.2 | Preventative and predictive maintenance | | | 5. | PROJ | ECT MANAGEMENT & SUPPORT | 5-1 | | | 5.1
5.2
5.3 | Staffing & Training Corporate Support Budget | 5.2 | | 6. | CAPIT | TAL PLANNING | 6-1 | | | 6.1
6.2 | Approved CIP Projects Current status Draft Capital Improvement Plan | | # **LIST OF TABLES** | TABLE | PAGE NO. | |---|----------| | Table 2.2 Influent Concentrations and Flow | | | Table 2.3 Finished Water Quality | 2-2 | | Table 2.4 Weekly Grab Sample Analysis Results | 2-4 | | Table 4.1 Budget Table | 5-3 | ## **EXECUTIVE SUMMARY** **Safety.** Safety is the number one priority at South Sangamon. We have instituted a monthly safety meeting for operations staff at the plant. There were no lost time accidents in the month of January 2025. **Compliance.** The finished water quality was within regulatory limits and all reporting and sampling requirements were met for the month. A copy of the Operations Report submitted to the Illinois Environmental Protection Agency is available at www.sswc.us During the month of January 2025, the plant pumped 42.645 million gallons from the well field and 37.997 million gallons of finished water. This is .556 million gallons less than January 2024. The SSWC plant has been removed from Critical Review status. **Operations.** There was 1 emergency call-outs for the month. There were numerous customer inquiry for the month. **Maintenance and Repair.** For the month of January 2025, there were 31 inspections, 3 preventative and multiple corrective maintenance activity completed. There was 4 repair activities performed. **Budget.** Passed at May 20th 2024 meeting. Capital Planning. Chatham emergency interconnect Onsite fuel storage tanks **Detention Tank** Well#11 # 1. SAFETY ## 1.1 SAFETY TRAINING At South Sangamon we strive to provide a safe working environment for all employees. This is accomplished with daily safety meetings and open communication. ## 1.2 LOST TIME ACCIDENTS There were 0 lost time accidents in the month of January 2025. # 1.3 SAFETY AUDIT No safety audits to date. # 1.4 MISCELLANEOUS SAFETY No notable safety issues # 2. COMPLIANCE, FLOWS AND LOADINGS #### 2.1 COMPLIANCE The finished water quality was within regulatory limits and all Bacteriological testing was completed for the month of January. A copy of the Operations Report to the Illinois Environmental Protection Agency (IEPA) is available on the SSWC website. ## 2.2 INFLUENT FLOWS AND LOADINGS The total gallons pumped from the well field were 42.645 MG. The influent parameters were all within the normal range. The influent flow and loadings are summarized below in Table 2.2 | | | Tab | le 2.2 Infl | uent Conce | entrations a | and Flow | | | |-------|------|------|-------------|------------|--------------|----------|------------|-----------------------------| | | рН | Temp | Iron | Manganese | Fluoride | Hardness | Alkalinity | Well
Flow
Gals (MGD). | | Max. | 7.53 | 14.6 | 3.62 | .341 | - | 400 | 310 | 1.619 | | Min. | 7.30 | 13.1 | .30 | .117 | - | 352 | 250 | .0.955 | | Avg. | 7.40 | 13.7 | .81 | .201 | - | 373 | 296 | 1.376 | | Total | • | - | - | - | ı | - | - | 42.645 | ## 2.3 EFFLUENT CONCENTRATIONS The facility filtered 37.997~MG during the month with a daily average of 1.226~MG and a min/max .858/1.460~MG. | | | | | Table | 2.3 Fir | nished Wat | er Qualit | у | | | |------|-------------|--------------|-----|-------|---------|------------|-----------|----------|------------|-----------| | | Free
CL2 | Total
CL2 | рН | Temp | Iron | Manganese | Fluoride | Hardness | Alkalinity | Phosphate | | Max. | 1.02 | 3.88 | 7.9 | | 0.03 | 0.300 | 1.13 | 400 | 320 | 2.82 | | Min. | 0.05 | 1.08 | 7.6 | | 0.01 | 0.016 | 0.41 | 100 | 273 | 0.88 | | Avg. | 0.13 | 3.28 | 7.8 | | 0.01 | 0.066 | 0.75 | 324 | 292 | 1.95 | | MCL | - | - | - | - | 1.00 | - | 4.00 | - | - | - | | SMCL | - | - | - | - | 0.30 | 0.050 | 2.00 | - | - | - | # Finished Water Flow Comparison for FY 2024 | Time Period | 2024-25 | 2023-24 | 2022-23 | |---------------------------|---------------|-------------|-------------| | Feb 2024-Jan 2025 | 414,494,294 | 421,469,532 | 415,813,951 | | Increase for the same per | iod last year | -6.98 MG | 5.66 MG | | | 2024.25 | 2022 24 | 2022 22 | 2021 22 | 2020 21 | 2010 20 | |--------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------| | Feb | 2024-25
29,777,768 | 2023 -24
33,481,076 | 2022-23
32,451,653 | 2021-22
30,638,842 | 2020-21
28,797,693 | 2019-20
28,625,431 | | Mar | 31,222,925 | 36,781,261 | 33,909,417 | 33,633,244 | 30,339,298 | 31,237,000 | | Apr | 31,707,537 | 36,832,617 | 31,991,050 | 33,214,211 | 31,542,650 | 28,418,249 | | May | 36,629,959 | 43,484,155 | 37,459,417 | 35,932,776 | 34,673,848 | 33,045,927 | | June | 40,285,085 | 22,455,176 | 38,496,145 | 37,616,256 | 17,414,377 | 33,460,303 | | July | 38,944,142 | 41,565,811 | 38,861,790 | 39,001,640 | 44,237,066 | 23,742,374 | | Aug | 38,576,284 | 39,770,720 | 36,977,913 | 39,953,900 | 39,638,063 | 25,018,633 | | Sept | 37,258,390 | 38,677,420 | 32,355,302 | 38,935,839 | 38,674,095 | 34,234,782 | | Oct | 34,907,003 | 32,733,224 | 29,576,287 | 34,918,955 | 34,597,739 | 30,769,238 | | Nov | 28,768,567 | 30,061,570 | 35,563,717 | 31,181,005 | 32,325,040 | 30,877,400 | | Dec | 32,675,158 | 31,818,986 | 30,450,255 | 31,391,459 | 31,582,311 | 29,703,954 | | Jan | 33,741,476 | 33,807,516 | 37,721,005 | 32,322,270 | 31,456,987 | 30,073,516 | | | | | | | | | | Totals | 414,494,294 | 421,469,532 | 415,813,951 | 418,740,397 | 395,279,167 | 359,206,807 | | Avg | 1.13 MGD | 1.16 MGD | 1.14 MGD | 1.15 MGD | 1.08 MGD | .984 MGE | # 2.4 LAGOON DISCHARGE CONCENTRATIONS The results for the NPDES lagoon discharge permit are summarized below. **Table 2.4 Weekly Grab Sample Analysis Results** | | ı | Lagoon Eff | luent Results | ; | | | |-----------------------------|-----------|--------------|--------------------|---------------------------|-----------|---------------| | Date | Fe (mg/l) | Mn
(mg/l) | Chloride
(mg/l) | CI ²
(mg/l) | pH (S.U.) | TSS
(mg/l) | | Jan 27 th , 2025 | | | | | | | | Minimum | .62 | .83 | 203.7 | .01 | 7.8 | <4 | | Maximum | .62 | .83 | 203.7 | .01 | 7.8 | <4 | | Average | .62 | .83 | 203.7 | .01 | 7.8 | <4 | | Monthly Avg Limit | 2.000 | 1.000 | | | | 15 | | Daily Limit | 4.000 | 2.000 | 500 | 0.05 | 6.0-9.0 | 30 | The Chloride sample for the month, performed by the Springfield Metropolitan Sanitary District, was below 30,000 mg/l for the month of January 2025. The limit for chloride discharge to the sanitary district is 30,000 mg/L. # 3. OPERATIONS ## 3.1 EVENTS IMPACTING OPERATIONS There were over 50 incident that impacted the operation of the plant. Ion exchange alarm Power surge Power Sag Ion Exchange Brine Pump Well check valves **Brine Pumps** Permanganate Pumps Air Scour Repair #### 3.2 EMERGENCY & SERVICE CALLS #### **Service Calls:** • There was 0 emergency call out for the month. ## 3.3 EMERGENCY CALL-OUTS There was 1 emergency call out for the month. #### 3.4 CUSTOMER INQUIRIE There were numerous customer inquiries. ## OTHER WORK PERFORMED Inspected distribution mains Inspected booster station Customer service SCADA programming Mower Maintenance Interconnect Start Up Well #11 construction Brine Pump Replacement Permanganate Pump Replacement Air Manifold Repair Ball Chatham School Radio Removal The air scour on train #1 came apart and had to be repaired. We attempted to purchase replacement pieces to affect a repair but have not been unable to do so. The staff at the plant has been able to manufacture replacement manifolds so that the train can be air scoured and have PDTs performed. These manifolds do the job but are not ideal. As soon as OEM parts can be sourced we will replace them. The Manganese started to climb so we inspected the Sodium Permanganate feed system. It was found that the feed pump had failed and needed to be replaced. There are 2 feed pumps. A new Sodium Permanganate has been installed. A newer, better design, less expensive feed pump has been installed. Another redundant feed pump is in the works, but has not been installed yet. The brine system for regen portion of the softening system quit filling the softeners with brine. It was found, after much testing, that the brine pumps had failed. One pump had a failed motor and one pump had a failed pump. Although both pumps were technically the same pump, they were not. Staff attempted scavenge parts from the 2 pumps to make 1 but were unable to do so. After many phone calls 2 new brine were able to be sourced and installed. Staff went out to the Ball-Chatham school and retrieved a couple of radios that South Sangamon had on site. We no longer use these radios for communications with the Chatham ground storage tanks. We will be using them for well #11 which will save us from having to purchasing a radio. # 4. MAINTENANCE AND REPAIR ## 4.1 PREVENTATIVE AND PREDICTIVE MAINTENANCE For the month of January 2025, there were 31 inspections, 3 preventative
and multiple corrective maintenance activities completed. #### 4.2 CORRECTIVE REPAIR AND MAINTENANCE Pulling and cleaning pre filters on all 3 filter trains on weekly basis CIP train 1,2 and 3 Purged air control system Raw water line flushing Detention tank flush Flushing Air Lines Maintenance of New Berlin Booster Station Meter Transmitter Replacement Air compressor Maintenance Pneumatic Tank Maintenance Well Maintenance Train #1 Repair Brine Pump replacement Sodium Permanganate Pump replacement. # 5. PROJECT MANAGEMENT & SUPPORT ## 5.1 STAFFING & TRAINING - Staff member training has been continuous and ongoing. - Operator and Asst. Operator have been studying for EPA licensing test. # 5.2 OPERATIONAL SUPPORT The following individuals, either on-site or remotely, provided assistance in operation and/or maintenance of the plant during the month of January 2025. - Kevin Canham - Stephen Bivin - Katie Krall - Dan (SCADAware) - Joe Lee Electric - Kevin Garmin (SCADAware) - Brotke Well and Pump # 5.3 BUDGET Table 5.3 Operating Budget # Table 5.3 Budget Table Budget Table was removed: see clerks report ## 6. CAPITAL PLANNING #### 6.1 APPROVED CIP PROJECTS CURRENT STATUS Pigging project construction complete. Awaiting first pigging before completely releasing contractor. The Chatham /South Sangamon emergency interconnect construction is complete. After many failed attempts; start has been completed. Meter Project progressing, All meter bases and registers are on site. all cell meters have been installed. Well #11 platform has been installed. Pits, bypass piping and hydrant are installed. Excavating the raw water main has been completed and the well connection to the raw water main has been done. Thrust blocks are to be poured in the near future Joe Lee Electric and Dan from scadaWARE have been onsite site to inspect and plan their portion of the well #11 construction. #### 6.2 DRAFT CAPITAL IMPROVEMENT PLAN The CIP is a planning document that includes all projects anticipated to exceed \$5,000 in cost over the next five years. The CIP is an ongoing process and will be refined from time to time as projects are completed and new issues are identified. - 1. Onsite fuel storage tanks have arrived on site and pumps have been installed-completed - 2. BOP CPU upgrade-completed - 3. Second raw water detention tank - 4. SSWC/Chatham interconnect-completed - 5. Well #11-underway - 6. SCADA computer upgrade-90% complete | Part | Physical and Chemical Tests Figure 1 Physical Annotation (Physical Property 1 Physical Pr | South Sangamon Water Commission - IL1670080 | outh Sangamon Wate | DA . | | |--|--|---|--|---|------| | Physical and Chemical Tests Annual A | Post EEX | ary 2025 | Janua | | | | Particular Part P | Post EX. | mical Tests | Physical and Chemi | | | | This control 1 | 1 2 3 4 | | Post IEX | ost UF Membrane | 4 | | May | NU mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l | Turbidity Total | 1 2 3 4 | _ | Į į | | 10.002 12.24 1.1 1.2 | 10.24 1.05 | NTU
mg/L | Cnloride
mg/L mg/L | uw 7/5m | e e | | 1010 1224 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Column C | -8 | | - | | | 10.00 10.0 | Control Cont | 0.23 294 | | 0.151 | 0.0 | | Control Column | 17.5 | 0.21 300 | | 0.101 | 0.0 | | 1.00 | 172 174 175 | 0.22 300 | | 0.092 | 0.0 | | 11.50 11.2 11.2 11.4 250 350 10.5 10.5 11.5 1 | 17.2 0.44 2.89 0.05 | 0.25 300 | | 080:0 | 0.01 | | 1. 1. 1. 1. 1. 1. 1. 1. | C22 C23 | 0.44 290 | | 0.122 | 0.0 | | C25 C25 C25 S300 S360 O14 O14 O16 O16 O14 O16 | 0.25 | 0.17 270 | | | 0.02 | | Color Colo | Color Colo | 0.23 300 | | | 0.01 | | 0.22 | 0.23 1.780 0.21 300 269 0.172 0.04 3.12 0.04 3.32 Pass 0.29 0.20 0.20 0.20 0.20 0.00 0.026 0.71 1.58 0.01 0.028 0.71 1.68 0.01 0.02 3.24 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 | 0.25 300 | | | 0.37 | | 0.28 | 0.22 | 0.21 300 | | | 0.01 | | C19 C19 C19 C19 C19 C29 C19 | Color Colo | 0.20 300 | | | 0.01 | | 0.22 7.80 0.22 3.90 0.01 0.047 0.44 1.88 0.01 0.05 1.08 0.05 1.08 0.05 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.08 0.05
0.08 0.05 0.05 0.08 0.05 0 | C 25 C 26 | 0.19 286 | | | 0.01 | | C22 C23 C24 C25 C26 C25 C26 | 0.28 | 0.20 290 | | | 0.01 | | C28 C29 | C28 780 | 0.25 300 | | | | | C25 C26 | C25 C26 | 0.23 300 | | | | | C25 C26 | 0.25 | 0.20 280 | | | | | C28 780 0.24 280 340 0.01 0.033 0.07 2.11 0.03 3.10 0.08 3.52 0.08 3.52 0.08 3.50 0.08 0.0 | C28 | 0.22 280 | | | | | Control Cont | Control Cont | 0.24 280 | | | _ | | Control Cont | Company Comp | 0.26 2.80 | | | | | C 24 F 180 C 24 F 180 C 24 F 280 S 340 C 101 C 350 C 101 C 350 C 102 | CZS TABO T | 0.24 280 | | | 0.01 | | Control Cont | 0.25 0.27 0.28 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 | 0.22 280 | | | 0.01 | | 12.2 | 12.2 | 0.24 280 | | | 0.01 | | Control Cont | 1 | 0.24 280 | | | 0.01 | | 0.21 0.22 0.29 0.24 2.86 350 0.01 0.04 0.74 2.09 0.01 3.71 0.07 3.24 0.00 0.24 0.28 350 0.01 0.04 0.74 2.09 0.01 3.71 0.07 3.24 0.00 0.24 0.28 3.80 0.01 0.04 0.74 2.09 0.01 3.71 0.07 3.24 0.00 0.28 0.29 3.80 0.01 0.04 0.74 2.09 0.01 3.77 0.08 3.30 0.01 0.04 0.74 0.02 0.01 3.77 0.08 3.30 0.01 0.04 0. | 0.21 0.22 0.26 0.26 0.26 0.26 0.27 0.26 0.27 0.26 0.27 0.27 0.26 0.27 0.27 0.27 0.28 0.27 0.27 0.28 0.27 0.27 0.28 0.27 0.27 0.28 0.27 0.27 0.28 0.27 0.27 0.28 0.27
0.28 0.27 0.28 | 0.25 300 | | | 0.01 | | 0.23 7.80 0.24 2.89 3.50 0.01 0.044 0.074 2.09 0.01 3.71 0.07 3.24 9 9 9 9 9 9 9 9 9 | 0.23 7.80 0.24 2.88 3.50 0.01 0.044 0.74 2.09 0.01 3.71 0.07 3.24 | 0.22 292 | | | 0.01 | | C 24 C 25 C 26 | C24 C25 C26 | 0.24 288 | | | 0.01 | | Consiste | 0.24 7.70 0.29 3.00 3.80 0.01 0.020 0.38 1.88 0.01 2.86 0.04 2.24 | 0.28 290 | | | 0.01 | | 0.25 7.50 0.27 3.00 3.50 0.01 0.040 0.41 0.88 0.01 2.88 0.24 2.24 | 0.25 760 0.27 300 350 0.01 0.040 0.41 0.88 0.01 2.86 0.24 2.24 | 0.29 300 | | | 0.01 | | 0.25 | 0.25 | 0.27 300 | | | 0.01 | | 0.25 7 7 7 7 7 7 7 7 7 | 0.25 ##### ##### ##### 7.60 0.29 3.30 3.80 0.01 0.031 0.91 2.11 0.01 3.27 0.34 3.66 ##### ##### ##### ##### ##### ##### #### | 0.26 320 | | | 0.01 | | 0.25 (##### (#### (###### (###### (###### (###### (###### (###### (###### (####### (###### (###### (######## | 0.025 #################################### | 0.29 300 | | | 0.01 | | 0.539 0.30 0 0 0 0 0 0 0 0 0 | 0.02 0 0 0 0 750 0 41 320 400 003 0.03 0.04 1.13 2.82 0.05 3.90 1.02 3.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.24 292 | ##### ##### ##### | 0.083 | 0.02 | | 0.028 0.12 0 0 0 0 780 0.17 270 100 0.01 0.016 0.41 0.88 0.00 0.34 0.05 1.08 0.00 0.00 0.00 0.00 | 1 | 0.44 320 | 0 0 0 0 | 0.539 | 0 | | pH Temp TTDS Alkalimly Calcium Chloride Suffate Remarks: °C mg/L mg/L mg/L mg/L 7.78 15.1 410 280 32 56 | pH Temp TDS Alvaininly Calcum Chloride Suffate Remarks: °C mgl. mgl. mgl. mgl. 7.78 15.1 410 280 32 56 | 0.17 270 | 0 0 0 0 | 0.028 | | | 7.78 15.1 410 280 32 56 | C mg/L mg/Lascacos mg/L mg/L
7.78 15.1 410 280 32 56 | 동 | | | ı | | 7.78 15.1 410 280 32 | 7.78 15.1 410 280 32 | H | Even | | | | | | - | 2 | | | | | - nana | L | | | | | +++++++++++++++++++++++++++++++++++++++ | | 1 1 1 1 1 1 1 1 1 1 | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | Out | | Part | ILLINOIS | ILLINOIS ENVIRONMENTAL PROTECTION AGENCY | VTAL PRC | TECTIO | N AGEN | ≿ | | \vdash | | \vdash | MONT | ILY IRO | REMOV | AL AND | ION EXC | MONTHLY IRON REMOVAL AND ION EXCHANGE SOFTENING REPORT | OFTEN | NG REP | PR- | | | | | | | | | | | | |--|----------|--|----------------|--------------|------------|-----------|-------------------|-------------|-----------------------|------------|----------------|----------------|-----------|-------------------|-------------|--|-------------|-------------------|-----|-------------|---------------|----------------|-------------|------------|------------|---|---------------|----------|---------|---------| | | 5 | | | 2 | | | | | | | ŭ | outh Sa | ngamc | n Wat | er Com | mission | - | 67008 | | | | - | - | | - | - | | | | | | Fig. 10 | | | - | | | | | | | | | | | Janu | ary 20 | 52 | | | | | | | | | | | | | | | | South Sout | | | - in | olete Totale | | T | | 1 | $\frac{1}{2}$ | | ٥ | oleojuo | Applied | - | + | | | | | ľ | 1 th | - | | - | 4 | 400 | 0,000 | | Page 1 | 212 | | Part | 1 | | Ldimp. | ng rotals | | T | | f | | F | ٥ | emicais | - bellied | | } | | | | | 7 | Lillers | | | _ | L | 200 | eners | | | | | No. | | 0 | | | | | Sodiu
Permanga | | Sodiun
3isulfite E | | Sodium | Ammor
Sulfa | | luorosili
Acid | | hosphate | | odium
ite Pond | | rs since | previous | | | | | de la constant | do do | , of | Regen | eration | | No. May | Time | Hours | + | Plant | | Effluent | Am't | | Amit | Am | + | Amit | <u> </u> | ym't | A | # | Amit | | | Dach | =
0
0 | Wa | | ned Bypass | | s since pre | wous regen | eration. | Salt | Washed | | No. | | Filter | | - | Pumpage | on page | \vdash | \vdash | \vdash | \vdash | - | Nsed | \vdash | - | \vdash | \vdash | - | - | | | | Ö | | | \vdash | eneration | at mid-day, i | indicate | Nsed | Water | | 1 | Read | Ran | _ | _ | _ | (Mgal) | | _ | - | + | + | \neg | _ | + | - | _ | _ | - | | Bank # | | W) | - | - | _ | urs previou | s/hours follo | owing. | lbs. | Gal. | | 1 | , | 9 | | 4 | | - | | aMnO4 | • | | as | 9 | as NH3 | | SF | as PO | 4 | 000 | | 2 | 3 | + | | | - | 2 | 3 | 4 | 7000 | 0.007 | | 1 | _ | 17.9 | | | | 0.057 | 0 | 0.00 | 0 0 | | | |
0.23 | 28 | 0.55 | 9 0 | | 0.00 | | 99.0 | 99:0 | | | | | | | | 2281 | 10850 | | 1 | + | 21.8 | | | | 0.040 | 0 | 000 | 5 0 | | | | 0.25 | 28 | 0.90 | 0 0 | 20 00 | 000 | | 0.00 | 990 | | | | | | | | 6843 | 32550 | | 1 | | 13.6 | | | | 0.043 | 0 | 000 | 0 | | | | 0.42 | 34 | 0.79 | | 80 | 0000 | | 99'0 | 99:0 | | | | | | | | 4562 | 21700 | | 10 12 12 12 12 12 12 12 | | 19.4 | | | | 0.059 | 0 | 00'0 | 0 | | | | 0.20 | 29 | 0.54 | | 75 | 0.00 | | 99'0 | 99'0 | | | | | 0:: | 36.0 | | 4562 | 21700 | | 1 | | 17.2 | | | | 0.058 | 0 | 00'0 | 0 | | | | 0.36 | 36 | 0.78 | | 12 | 0.00 | | 99'0 | 99'0 | _ | | | | | | | 6843 | 32550 | | 10 13 14 14 14 14 14 14 14 | 7 7:00 | 18.1 | | | | 0.066 | 0 | 00'0 | 0 | | | | 0.25 | 32 | 99'0 | | 2 | 0.00 | | 99'0 | 99'0 | | | | 19 | | | | 4562 | 21700 | | 1 | _ | 21.6 | | | | 0.054 | 0 | 0.00 | 0 0 | | | | 0.23 | 22 | 0.37 | | 91 | 0.00 | | 99.0 | 99:0 | | | | 47 | 45. | 0. | | 2281 | 10850 | | 1 | _ | 21.0 | \perp | | | 0.034 | 41 | 0.00 | 0 0 | | | | 0.41 | # 10 | 0.97 | | 0 14 | 000 | | 0.00 | 0.00 | | | | | - | 85.0 | | 0843 | 32550 | | 1 | _ | 15.3 | | | | 0.047 | 20 | 0.42 | 0 | | | | 0.26 | 92 | 0.57 | 6 02 | 2 63 | 000 | | 990 | 0.00 | | | | | 2 0 | 0.00 | | 2281 | 10850 | | 14 15 15 15 15 15 15 15 | _ | 16.0 | Ĺ | ┸ | ľ | 0.055 | 23 | 0.46 | 0 | | | | 0.34 | 32 | 0.75 | 9 0.3 | 7 | 00:0 | | 99'0 | 99'0 | | | | | | | | | 32550 | | 1 | _ | 19.7 | | | | 0.072 | 26 | 0.42 | 0 | | | | 0.35 | 35 | 0.65 | | rD. | 000 | | 99'0 | 99'0 | - | | | | | | | | 43400 | | 1. 1. 1. 1. 1. 1. 1. 1. | - | 18.0 | Ш | | | 0.046 | 13 | 0.23 | 0 | П | | | 0.30 | 59 | 0.59 | | 5 | 0.00 | | 99'0 | 99:0 | | | | | | | | 0 | 0 | | 1. 1. 1. 1. 1. 1. 1. 1. | - | 18.9 | | | | 0.073 | 29 | 0.50 | 0 | | | | 0.35 | 31 | 0.65 | | 4 | 0.00 | | 99'0 | 99'0 | | | | | | | | 9124 | 43400 | | 100 110 | | 17.1 | _ | | | 0.056 | 20 | 0.39 | 0 | | | | 0.35 | | 0.63 | | 91 | 0.00 | | 99'0 | 99:0 | | | | | | | | 9124 | 43400 | | 1.25 1.156 1.156 1.156 1.156 1.156 0.156 | | 19.0 | _ | | | 0.056 | 21 | 0.35 | 0 | | | | 0.32 | | 0.57 | | 6 | 0.00 | | 99'0 | 99.0 | | | | | | | | 0 | 0 | | 1.00 | _ | 17.6 | | | | 0.063 | 20 | 0.37 | 0 0 | | | | 0.31 | | 0.58 | | - u | 0.00 | | 99.0 | 99.0 | | | | | | | | 9124 | 43400 | | 1. 1. 1. 1. 1. 1. 1. 1. | | 20.5 | | | | 0.003 | 21 | 0.32 | 0 0 | | | | 0.34 | | 0.50 | | 2 0 | 000 | | 0.00 | 0.00 | | | | | | | | 4562 | 21700 | | 1.50 | | 20.7 | | | | 0.067 | 27 | 0.42 | 0 | | | | 0.45 | | 0.72 | | 2 10 | 000 | | 99'0 | 99:0 | | | | | | | | 4562 | 21700 | | 1.00 1.15 | | 21.3 | Ľ | 1 | | 0.057 | 18 | 0.28 | 0 | | | | 0.28 | | 0.45 | 5 0.1 | 2 | 0.00 | | 99'0 | 99:0 | | | | | | | | 0 | 0 | | 7.00 1.564 1.566 1.566 1.566 1.566 1.566 1.566 1.566 1.566 1.566 1.566 1.566 1.566 1.566 1.566 1.566 1.566 1.566 1.566 1.566
1.566 | | 17.0 | | | | 0.042 | 22 | 0.42 | 0 | | | | 0.40 | 35 | 0.72 | | 91 | 0.00 | | 99'0 | 99'0 | | | | 72 | | | | 0 | 0 | | 7.00 2.01 1.055 1.450 0.000 1.356 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.055 | | 20.8 | | | | 0.057 | 22 | 0.34 | 0 | | | | 0.33 | 32 | 0.64 | | 32 | 0.00 | | 99'0 | 99.0 | | | | 99 | | | | 0 | 0 | | 1.1. | _ | 22.0 | | | | 0.053 | 21 | 0.31 | 0 | | | | 0.25 | 59 | 0.48 | | 61 7 | 0.00 | | 99.0 | 99.0 | + | | | | | | 407.0 | 0 | 0 0 | | 7.00 2.12 1.586 1.378 0.000 1.326 0.057 2.3 0 0.000 1.326 0.050 | _ | 21.4 | | | | 0.065 | 22 | 0.33 | 0 | | | ľ | 0.28 | 33 | 0.57 | | - 8 | 000 | | 0.00 | 99:0 | + | | | | 2 | | 35.0 | 2281 | 10850 | | 7.00 2.05 4.15 1.35 0.000 1.26 0.05 | - | 21.2 | Ĺ | | | 0.057 | 23 | 0.35 | 0 | | | | 0.26 | 36 | 0.62 | | 4 | 0.00 | | 99'0 | 99:0 | | | | | 0: | 178.0 | | 4562 | 21700 | | 7.00 15.1 1.147 1.052 0.000 0.910 0.050 15 0.31 0.000 3.86 5.10 1.2 0.27 3.2 0.000 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.000 1.333 0.000 1.233 0.000 1.233 0.000 1.233 0.000 1.233 0.000 1.233 0.000 1.233 0.000 1.233 0.000 1.233 0.000 1.233 0.000 1.233 0.000 1.233 0.000 1.233 0.000 1.233 0.000 1.233 0.000 1.230 0.000 1.230 0.000 1.230 0.000 1.230 0.000 1.230 0.000 0.0 | | 20.5 | | | | 0.061 | 19 | 0.30 | 0 | | | | 0.27 | 29 | 0.52 | | 2 | 0.00 | | 99'0 | 99'0 | | | | 27 | 213. | 0. | | 2281 | 10850 | | 150 1561 1351 1352 1005 1288 1005 1288 1005 1289 1005 1288 1005
1288 1005 1288 1288 1005 1288 1288 1005 1288 1288 1005 1288 1 | _ | 15.1 | _ | | | 0.050 | 15 | 0.31 | 0 | | | | 0.27 | 32 | 0.80 | | က္ | 0.00 | | 99'0 | 99:0 | | | | | 0: | | 61.0 | 4562 | 21700 | | 12.56 20.21 22.65 20.22 20.65 20.22 20.65 20.22 20.65 20.22 20.65 20.22 20.65 20.6 | _ | 21.8 | | | | 0.055 | 23 | 0.35 | 0 | | | 13 | 0.23 | | | | 80 | 0.00 | | 99'0 | 99:0 | | | | | | | | 0 | | | Ave. 18.2 13.70 13.20 Long House L | Total | | | | | 1.777 | 485 | 8.29 | 0 0 | 0 0 | | 486 | 9.70 | | | | | | | 000 | | | | | | | | | 130736 | _ | | Mark | Ave. | | | | | 0.05/ | 15.6 | 0.27 | 0 0 | 0 0 | | | 0.31 | 31.1 | | | | | | 0.06 | | | | | Ľ | - ` | Ĺ | 1 | 4217.29 | | | 201% Sodium Peranganaba Post-aerator OHLORNATION | Min | | | | | 0.00 | 0.1 | 000 | 0 0 | 0 0 | | , | 0.10 | 22 | 0.37 | | | | | 0.00 | 0.00 | 0 0 | | | | ` | | | 3,043 | 004,64 | | 201 % Sodium Permanganab Post-serator Add Sodium Permanganab Post-serator Add Sodium Permanganab Membrane Backwash Membrane Backwash Amnorian Sulfa Sodium Mypoorlone 12.5 % Type of Puoride Used Hydrofluosilicic Add 19% F Reported by: 2017/2025 | Ē | | | | | 0.034 | 0.0 | 0.00 | 5 | > | | 0 | ± | 77 | 10:01 | 7 0.1 | | | | 0.00 | 0.00 | 5 | | | | | | | 0 | > | | 40% Beuiffeckouton Membrane Backwash All Seulifeckouton Membrane Backwash All Seulifeckouton Membrane Backwash All Seulifeckouton Membrane Backwash All Seulifeckouton Membrane Backwash All Selection | 1 20 | 8 | nanganate | | Postaerat | or, | | HLORINAT | NO. | | | | Ē | JORIDATIC | z | | | | | certifythat | the informat | ion in this re | port is com | plete | | | | | | | | 1.23% Ammontm Studion Post Clearwell Chlorine Analyzers Used: Hach CL17 (2) & 5500sc Ruoride Analyzer Used: Hach 2200, SPADNS method Date: 231% Processing Analyzers Used: Hach CL17 (2) & 5500sc Ruoride Analyzer Used: Hach 2200, SPADNS method Date Bacterials Set 12725, 22825 | 2 40 | | fon | | Membrane | 9 Backwas | | | | - | | 9 | - | - 5 | | | | 1.007 | | and accura | te to the bes | t of m y knov | ledge. | 100 | | - | | 0000 | | | | 19 % Fluorosiliciz Acid Soution Post Cleanwell Othorine Analyzers Used: Hach CL 17 (2) & 5500sc Ruoride Analyzer Used: Hach 2200, SPADNS method Date Bacterials Ser | + | | Sulfate Soluti | Τ | Post Clear | | | ypeorcnic | orine Used | TE SO | um Hypochion | % C.21.9 | _ | pe of Fillor | de Used | Hydroll | UOSIIICIC A | 1 % FL DIO | | Reported b | y: | /2025 | \parallel | Sioul | Uperator C | enication | | 8888 | | | | 23% Phosphate Soution Post Ceranell Date Baderials Ser | Н | | Acid Solution | | PostClear | JII Well | O | hlorine Ans | alyzers Used | 1: Hach CL | 17 (2) & 5500s | 0 | æ | oride Anal: | Zer Used: I | 1ach 2200, § | 3PADNS m | potter | | | i | | | | | | | | | | | | H | | olution | | PostClear | llew | | | | | | | | + | | | | | | Date Bacte | rials Ser | 11 | 27/25, 2/28 | 25 | | | | | | |